Studies on co-pyrolysis of microalgae and polymeric waste (plastic/rubber): Thermal behavior, kinetics, and product characteristics

IF 5.8 2区 化学 Q1 CHEMISTRY, ANALYTICAL Journal of Analytical and Applied Pyrolysis Pub Date : 2024-12-18 DOI:10.1016/j.jaap.2024.106924
Junjie Weng , Xu Wang , Zhanjun Cheng , Zhongyue Zhou , Haoran Liu , Hairong Ren , Jingyi Wang , Jianfeng Pan
{"title":"Studies on co-pyrolysis of microalgae and polymeric waste (plastic/rubber): Thermal behavior, kinetics, and product characteristics","authors":"Junjie Weng ,&nbsp;Xu Wang ,&nbsp;Zhanjun Cheng ,&nbsp;Zhongyue Zhou ,&nbsp;Haoran Liu ,&nbsp;Hairong Ren ,&nbsp;Jingyi Wang ,&nbsp;Jianfeng Pan","doi":"10.1016/j.jaap.2024.106924","DOIUrl":null,"url":null,"abstract":"<div><div>Frequent global health crises pose the challenge of effectively recycling the vast amounts of waste polymers generated by pandemics. The co-pyrolysis of polymers and microalgae to produce high value-added chemicals and fuels presents a promising solution for waste management. The present work aims to comprehensively study the thermal degradation properties, synergistic effects, kinetic parameters, product distribution, and pyrolytic oil composition of <em>Chlorella vulgaris</em> (CV), polystyrene (PS), and nitrile butadiene gloves (NBG) co-pyrolysis. The results show that the interaction during co-pyrolysis promotes CV decomposition. The kinetic analysis indicated that CV:PS:NBG reduced the activation energy at all phases. The master plot method shows that CV, PS, and NBG correspond to the order reaction model (F8), nucleation model (A2), and diffusional model (D3), respectively. Meanwhile, the 1D diffusion model (D1), second-order model (F2), and first-order model (F1) are more suitable for the pyrolysis processes of CV:PS, CV:NBG and CV:PS:NBG. The thermodynamic characteristics suggest that all components require external energy to form activated complexes, and the presence of polymers promotes this process. Co-pyrolysis greatly enhanced the pyrolysis oil yield, from 45.58 wt% for the CV alone pyrolysis to 67.36 wt% for CV:PS, 50.59 wt% for CV:NBG, and 61.43 wt% for CV:PS:NBG. Compared to the theoretical values, the pyrolysis oil derived from the ternary blend exhibited increases of 17.74 % and 7.04 % in aromatic hydrocarbons and hydrocarbons, while the contents of N and O elements were reduced by 2.96 % and 2.54 %, respectively. The interaction mechanism and potential reaction pathways of CV with PS and NBG co-pyrolysis was proposed based on the reaction process. This study implies that CV co-pyrolyzed with PS and NBG could optimize energy output, providing theoretical and practical support for efficiently utilizing waste resources.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"186 ","pages":"Article 106924"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237024005795","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Frequent global health crises pose the challenge of effectively recycling the vast amounts of waste polymers generated by pandemics. The co-pyrolysis of polymers and microalgae to produce high value-added chemicals and fuels presents a promising solution for waste management. The present work aims to comprehensively study the thermal degradation properties, synergistic effects, kinetic parameters, product distribution, and pyrolytic oil composition of Chlorella vulgaris (CV), polystyrene (PS), and nitrile butadiene gloves (NBG) co-pyrolysis. The results show that the interaction during co-pyrolysis promotes CV decomposition. The kinetic analysis indicated that CV:PS:NBG reduced the activation energy at all phases. The master plot method shows that CV, PS, and NBG correspond to the order reaction model (F8), nucleation model (A2), and diffusional model (D3), respectively. Meanwhile, the 1D diffusion model (D1), second-order model (F2), and first-order model (F1) are more suitable for the pyrolysis processes of CV:PS, CV:NBG and CV:PS:NBG. The thermodynamic characteristics suggest that all components require external energy to form activated complexes, and the presence of polymers promotes this process. Co-pyrolysis greatly enhanced the pyrolysis oil yield, from 45.58 wt% for the CV alone pyrolysis to 67.36 wt% for CV:PS, 50.59 wt% for CV:NBG, and 61.43 wt% for CV:PS:NBG. Compared to the theoretical values, the pyrolysis oil derived from the ternary blend exhibited increases of 17.74 % and 7.04 % in aromatic hydrocarbons and hydrocarbons, while the contents of N and O elements were reduced by 2.96 % and 2.54 %, respectively. The interaction mechanism and potential reaction pathways of CV with PS and NBG co-pyrolysis was proposed based on the reaction process. This study implies that CV co-pyrolyzed with PS and NBG could optimize energy output, providing theoretical and practical support for efficiently utilizing waste resources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
11.70%
发文量
340
审稿时长
44 days
期刊介绍: The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.
期刊最新文献
Effect of calcination temperature of red mud POC and hydrothermal pretreatment of wet sludge on syngas quality Efficient styrene removal from refuse-derived fuel pyrolysis oil using waste hydroprocessing catalysts A bibliographic study of biochar and hydrochar: Differences and similarities Analysis of component interaction in beech wood pyrolysis by native mixing with mildly invasive pretreatments Hydrothermal carbonization of combined sodium citrate-thermal pretreated sewage sludge for the production of low-nitrogen clean solid fuels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1