Microstructural, interfacial, and frictional properties of TixCy /Ni composites

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Mechanical Sciences Pub Date : 2025-01-15 DOI:10.1016/j.ijmecsci.2024.109883
Phu-Cuong Le , Tan-Tai Do , Te-Hua Fang , Chun-I Lee
{"title":"Microstructural, interfacial, and frictional properties of TixCy /Ni composites","authors":"Phu-Cuong Le ,&nbsp;Tan-Tai Do ,&nbsp;Te-Hua Fang ,&nbsp;Chun-I Lee","doi":"10.1016/j.ijmecsci.2024.109883","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the variation of Ti<sub>x</sub>C<sub>y</sub>/Ni composite properties during the polishing process using molecular dynamics simulation. Various material parameters and testing conditions, including abrasion depth, abrasion velocity, reinforcement particle derivatives, and reinforcement particle size, are examined, revealing both advantageous and disadvantageous impacts on feedstock characteristics such as supply force, friction coefficient, dislocation distribution, von Mises stress, and displacement vector. The findings indicate that increasing the velocity of the abrasive ball reduces the friction coefficient up to a certain threshold, beyond which it no longer improves and instead increases the density of dislocation distribution within the structure. Strong covalent bonding of TiC aids in reducing the friction coefficient and absorbing the force transmitted from the Ni matrix. Changes in the TiC reinforcement particle radius had minimal impact on polishing and normal force, as larger particles exhibited elastic deformation. However, TiC particles with 12 Å and 15 Å radii formed locked dislocations, significantly hardening the TiC/Ni matrix. This research offers key insights for optimizing TiC/Ni friction characteristics of composites and machining parameters for high-value product fabrication.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"286 ","pages":"Article 109883"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002074032400924X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the variation of TixCy/Ni composite properties during the polishing process using molecular dynamics simulation. Various material parameters and testing conditions, including abrasion depth, abrasion velocity, reinforcement particle derivatives, and reinforcement particle size, are examined, revealing both advantageous and disadvantageous impacts on feedstock characteristics such as supply force, friction coefficient, dislocation distribution, von Mises stress, and displacement vector. The findings indicate that increasing the velocity of the abrasive ball reduces the friction coefficient up to a certain threshold, beyond which it no longer improves and instead increases the density of dislocation distribution within the structure. Strong covalent bonding of TiC aids in reducing the friction coefficient and absorbing the force transmitted from the Ni matrix. Changes in the TiC reinforcement particle radius had minimal impact on polishing and normal force, as larger particles exhibited elastic deformation. However, TiC particles with 12 Å and 15 Å radii formed locked dislocations, significantly hardening the TiC/Ni matrix. This research offers key insights for optimizing TiC/Ni friction characteristics of composites and machining parameters for high-value product fabrication.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
期刊最新文献
Editorial Board Free and random-vibration characteristics of sandwich panels featuring orthogonal accordion cores An improved Flory's statistical-mechanics model of chain-molecular for compressible polymers Healable polymer blends: Computational analysis of damage and healing mechanisms A dynamic compliance matrix method for modeling compliant mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1