Advanced colon cancer detection: Integrating context-aware multi-image fusion (Camif) in a multi-stage framework

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Egyptian Informatics Journal Pub Date : 2025-01-08 DOI:10.1016/j.eij.2025.100609
M.V.R. Vittal
{"title":"Advanced colon cancer detection: Integrating context-aware multi-image fusion (Camif) in a multi-stage framework","authors":"M.V.R. Vittal","doi":"10.1016/j.eij.2025.100609","DOIUrl":null,"url":null,"abstract":"<div><div>Colon cancer begins in the large intestine, often evolving from benign polyps into malignant cancer. Early detection through screening is vital for effective treatment and better survival rates. Risk factors include age, genetics, diet, and lifestyle, with symptoms like changes in bowel habits and blood in the stool, though early stages may be asymptomatic. This work proposed a comprehensive multi classes detection and classification of colon cancer. In this work we used publicly available Curated Colon Dataset to diagnose conditions such as esophagitis, ulcerative colitis, polyps, and normal cases. The proposed approach uses advanced deep learning models to integrate pre-processing, segmentation, and classification. The process begins with pre-processing, which involves resizing, contrast enhancement, noise reduction, and normalization of pixel values. This work proposes a Context-Aware Multi-Image Fusion (CA-MIF) technique in the preprocessing phase to improve the visibility of blood vessels and tissue texture, enhancing diagnostic accuracy. The processed images are then input to a U-Net++ model for segmentation, generating masks highlighting regions of interest, including the colon and affected areas. Post-segmentation, image enhancement techniques further refine the quality and clarity of the images. Enhanced images are then classified using the ResNet-50 model, trained to categorize images into four distinct classes: esophagitis, ulcerative colitis, polyps, and normal. In the classification phase, cancerous classes (ulcerative colitis and polyps) undergo additional segmentation using DeepLabv3+. Model 1 (DeepLabv3+) is applied to ulcerative colitis, generating detailed masks to analyze affected regions, while Model 2 (DeepLabv3+) is used for polyps. For the U-Net++ and DeepLabv3+ models, evaluation measures are segmentation accuracy, precision, recall, and F1 score; for the ResNet-50 model, these metrics are classification accuracy, precision, recall, and F1 score. When it comes to detecting and differentiating between malignant and non-cancerous illnesses, the framework achieves great accuracy., demonstrating its effectiveness and potential for clinical applications in medical image analysis. The results indicate the proposed method’s high efficacy, achieving an F1 score of 99.31. It also demonstrated strong performance metrics with a specificity of 99.91, sensitivity of 99.10, accuracy of 98.18, and a Dice coefficient of 99.82, highlighting its robust capability in accurately detecting colon cancer.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"29 ","pages":"Article 100609"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866525000015","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Colon cancer begins in the large intestine, often evolving from benign polyps into malignant cancer. Early detection through screening is vital for effective treatment and better survival rates. Risk factors include age, genetics, diet, and lifestyle, with symptoms like changes in bowel habits and blood in the stool, though early stages may be asymptomatic. This work proposed a comprehensive multi classes detection and classification of colon cancer. In this work we used publicly available Curated Colon Dataset to diagnose conditions such as esophagitis, ulcerative colitis, polyps, and normal cases. The proposed approach uses advanced deep learning models to integrate pre-processing, segmentation, and classification. The process begins with pre-processing, which involves resizing, contrast enhancement, noise reduction, and normalization of pixel values. This work proposes a Context-Aware Multi-Image Fusion (CA-MIF) technique in the preprocessing phase to improve the visibility of blood vessels and tissue texture, enhancing diagnostic accuracy. The processed images are then input to a U-Net++ model for segmentation, generating masks highlighting regions of interest, including the colon and affected areas. Post-segmentation, image enhancement techniques further refine the quality and clarity of the images. Enhanced images are then classified using the ResNet-50 model, trained to categorize images into four distinct classes: esophagitis, ulcerative colitis, polyps, and normal. In the classification phase, cancerous classes (ulcerative colitis and polyps) undergo additional segmentation using DeepLabv3+. Model 1 (DeepLabv3+) is applied to ulcerative colitis, generating detailed masks to analyze affected regions, while Model 2 (DeepLabv3+) is used for polyps. For the U-Net++ and DeepLabv3+ models, evaluation measures are segmentation accuracy, precision, recall, and F1 score; for the ResNet-50 model, these metrics are classification accuracy, precision, recall, and F1 score. When it comes to detecting and differentiating between malignant and non-cancerous illnesses, the framework achieves great accuracy., demonstrating its effectiveness and potential for clinical applications in medical image analysis. The results indicate the proposed method’s high efficacy, achieving an F1 score of 99.31. It also demonstrated strong performance metrics with a specificity of 99.91, sensitivity of 99.10, accuracy of 98.18, and a Dice coefficient of 99.82, highlighting its robust capability in accurately detecting colon cancer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
期刊最新文献
Multistep prediction for egg prices: An efficient sequence-to-sequence network A multi-objective fuzzy model based on enhanced artificial fish Swarm for multiple RNA sequences alignment A road lane detection approach based on reformer model Advanced segmentation method for integrating multi-omics data for early cancer detection Innovation of teaching mechanism of music course integrating artificial intelligence technology: ITMMCAI-MCA-ACNN approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1