Enhancement-suppression driven lightweight fine-grained micro-expression recognition

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Visual Communication and Image Representation Pub Date : 2024-12-24 DOI:10.1016/j.jvcir.2024.104383
Xinmiao Ding , Yuanyuan Li , Yulin Wu , Wen Guo
{"title":"Enhancement-suppression driven lightweight fine-grained micro-expression recognition","authors":"Xinmiao Ding ,&nbsp;Yuanyuan Li ,&nbsp;Yulin Wu ,&nbsp;Wen Guo","doi":"10.1016/j.jvcir.2024.104383","DOIUrl":null,"url":null,"abstract":"<div><div>Micro-expressions are short-lived and authentic emotional expressions used in several fields such as deception detection, criminal analysis, and medical diagnosis. Although deep learning-based approaches have achieved outstanding performance in micro-expression recognition, the recognition performance of lightweight networks for terminal applications is still unsatisfactory. This is mainly because existing models either excessively focus on a single region or lack comprehensiveness in identifying various regions, resulting in insufficient extraction of fine-grained features. To address this problem, this paper proposes a lightweight micro-expression recognition framework –Lightweight Fine-Grained Network (LFGNet). The proposed network adopts EdgeNeXt as the backbone network to effectively combine local and global features, as a result, it greatly reduces the complexity of the model while capturing micro-expression actions. To further enhance the feature extraction ability of the model, the Enhancement-Suppression Module (ESM) is developed where the Feature Suppression Module(FSM) is used to force the model to extract other potential features at deeper layers. Finally, a multi-scale Feature Fusion Module (FFM) is proposed to weigh the fusion of the learned features at different granularity scales for improving the robustness of the model. Experimental results, obtained from four datasets, demonstrate that the proposed method outperforms already existing methods in terms of recognition accuracy and model complexity.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"107 ","pages":"Article 104383"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324003390","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Micro-expressions are short-lived and authentic emotional expressions used in several fields such as deception detection, criminal analysis, and medical diagnosis. Although deep learning-based approaches have achieved outstanding performance in micro-expression recognition, the recognition performance of lightweight networks for terminal applications is still unsatisfactory. This is mainly because existing models either excessively focus on a single region or lack comprehensiveness in identifying various regions, resulting in insufficient extraction of fine-grained features. To address this problem, this paper proposes a lightweight micro-expression recognition framework –Lightweight Fine-Grained Network (LFGNet). The proposed network adopts EdgeNeXt as the backbone network to effectively combine local and global features, as a result, it greatly reduces the complexity of the model while capturing micro-expression actions. To further enhance the feature extraction ability of the model, the Enhancement-Suppression Module (ESM) is developed where the Feature Suppression Module(FSM) is used to force the model to extract other potential features at deeper layers. Finally, a multi-scale Feature Fusion Module (FFM) is proposed to weigh the fusion of the learned features at different granularity scales for improving the robustness of the model. Experimental results, obtained from four datasets, demonstrate that the proposed method outperforms already existing methods in terms of recognition accuracy and model complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
期刊最新文献
Editorial Board Delicate image segmentation based on cosine kernel graph cut DUWS Net: Wavelet-based dual U-shaped spatial-frequency fusion transformer network for medical image segmentation Applying usability assessment method for surveillance video anomaly detection with multiple distortion Self-supervised monocular depth estimation with large kernel attention and dynamic scene perception
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1