Srinivasagan M. , Khirupa Sagar R. , Mahesh A. , Arun Krishna B.J. , Jayabal K.
{"title":"Domain switching effects on crack propagation in ferroelectrics through SBFEM","authors":"Srinivasagan M. , Khirupa Sagar R. , Mahesh A. , Arun Krishna B.J. , Jayabal K.","doi":"10.1016/j.ijmecsci.2024.109899","DOIUrl":null,"url":null,"abstract":"<div><div>Electromechanically coupled ferroelectric materials exhibit complex nonlinear behaviour under higher magnitudes of mechanical and electrical loading owing to their microscopic domain switching phenomenon. The presence of pre-cracks in the polycrystalline ferroelectrics intensifies the localized electric fields and mechanical stresses. In this paper, a micromechanical model combined with the scaled boundary finite element method (SBFEM) explores domain switching near the crack tip under cyclic electric fields and mechanical stresses. The solution for stress at the singularity near the crack tip is realized through SBFEM. A naturally evolving Voronoi polygonal tessellation is employed to mimic the microstructure of a typical polycrystalline ferroelectric material where each ferroelectric grain is represented by a Voronoi polygon. The dynamic crack propagation across grains under electrical or combined mechanical loading is predicted by introducing a novel re-meshing technique. The fracture parameters evaluated through the proposed method are validated by their close correspondence with the experimental compact tension test and three-point bend test results from the literature.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"286 ","pages":"Article 109899"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740324009408","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electromechanically coupled ferroelectric materials exhibit complex nonlinear behaviour under higher magnitudes of mechanical and electrical loading owing to their microscopic domain switching phenomenon. The presence of pre-cracks in the polycrystalline ferroelectrics intensifies the localized electric fields and mechanical stresses. In this paper, a micromechanical model combined with the scaled boundary finite element method (SBFEM) explores domain switching near the crack tip under cyclic electric fields and mechanical stresses. The solution for stress at the singularity near the crack tip is realized through SBFEM. A naturally evolving Voronoi polygonal tessellation is employed to mimic the microstructure of a typical polycrystalline ferroelectric material where each ferroelectric grain is represented by a Voronoi polygon. The dynamic crack propagation across grains under electrical or combined mechanical loading is predicted by introducing a novel re-meshing technique. The fracture parameters evaluated through the proposed method are validated by their close correspondence with the experimental compact tension test and three-point bend test results from the literature.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.