Md Kaab Bin Hossen, Istiak Ahmed Ovi, Md Anas Bin Hossen, Md Adil Hossain
{"title":"Comprehensive first-principle investigation of sodium protactinium oxide (NaPaO3): Unraveling structural, electrical, mechanical, and thermodynamic properties under hydrostatic pressure","authors":"Md Kaab Bin Hossen, Istiak Ahmed Ovi, Md Anas Bin Hossen, Md Adil Hossain","doi":"10.1016/j.physo.2025.100254","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite materials have gained substantial attention in materials science and engineering for their numerous applications. For potential solar material & optoelectronic application it was analyzed in this study using the density functional theory (DFT). Specifically, the structural along with the electrical, thermodynamic, optical, and mechanical properties of NaPaO<sub>3</sub> were investigated under different hydrostatic pressures, ranging from 0 to 60 GPa. The pressure-induced effects were characterized by a reduction in interatomic distance, resulting in a significant decrease in the lattice constant and unit cell volume of the perovskite structure. Utilizing the generalized gradient approximation (GGA), the study delved into the equilibrium structural properties, elastic characteristics, energy band structure, and density of states of NaPaO<sub>3</sub>. The compound shows mechanical stability in all structural configurations when pressure is applied up to 60 GPa. The compound exhibits a transition from ductile to brittle behavior, with the B/G ratio rising from 2.188 at 0 GPa to 10.422 at 60 GPa, indicating increased stiffness and reduced deformability under pressure. The band structure, initially found at 3.208 eV under normal pressure, approaches the Fermi level with increasing pressure, indicating its potential in semiconductor applications. Detailed analyses of band structures, and partial & total density of states (PDOS and TDOS) reveal the electronic behaviors of the compound. NaPaO<sub>3</sub> exhibited remarkable mechanical and optoelectronic attributes under hydrostatic pressure, making it a strong candidate for applications in photovoltaics and solar panel technologies.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"22 ","pages":"Article 100254"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032625000043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite materials have gained substantial attention in materials science and engineering for their numerous applications. For potential solar material & optoelectronic application it was analyzed in this study using the density functional theory (DFT). Specifically, the structural along with the electrical, thermodynamic, optical, and mechanical properties of NaPaO3 were investigated under different hydrostatic pressures, ranging from 0 to 60 GPa. The pressure-induced effects were characterized by a reduction in interatomic distance, resulting in a significant decrease in the lattice constant and unit cell volume of the perovskite structure. Utilizing the generalized gradient approximation (GGA), the study delved into the equilibrium structural properties, elastic characteristics, energy band structure, and density of states of NaPaO3. The compound shows mechanical stability in all structural configurations when pressure is applied up to 60 GPa. The compound exhibits a transition from ductile to brittle behavior, with the B/G ratio rising from 2.188 at 0 GPa to 10.422 at 60 GPa, indicating increased stiffness and reduced deformability under pressure. The band structure, initially found at 3.208 eV under normal pressure, approaches the Fermi level with increasing pressure, indicating its potential in semiconductor applications. Detailed analyses of band structures, and partial & total density of states (PDOS and TDOS) reveal the electronic behaviors of the compound. NaPaO3 exhibited remarkable mechanical and optoelectronic attributes under hydrostatic pressure, making it a strong candidate for applications in photovoltaics and solar panel technologies.