Distributed process monitoring of the large-scale system using spatio-temporal-causality and Wasserstein-distance-based canonical variate analysis

IF 3.3 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Journal of Process Control Pub Date : 2025-02-01 DOI:10.1016/j.jprocont.2024.103367
Chong Xu , Daoping Huang , Guangping Yu , Yiqi Liu
{"title":"Distributed process monitoring of the large-scale system using spatio-temporal-causality and Wasserstein-distance-based canonical variate analysis","authors":"Chong Xu ,&nbsp;Daoping Huang ,&nbsp;Guangping Yu ,&nbsp;Yiqi Liu","doi":"10.1016/j.jprocont.2024.103367","DOIUrl":null,"url":null,"abstract":"<div><div>Distributed process monitoring gains popularity recently to perform system health management for large-scale industrial processes and support the decision-making for system maintenance. However, process monitoring for complex large -scale systems using distributed approaches is often challenging due to significant nexus among variables. Therefore, this article proposed a novel distributed process monitoring method to achieve efficient monitoring with a reasonable and interpretable division scheme which is only given by the spatial distribution of each variable and the results of Granger causality analysis. At each subblock, a local canonical variate analysis model with Wasserstein-distance-based indices can be built to monitor each local system. With the help of a Bayesian inference strategy, all the local monitoring results are fused into a global one. Then, from both block-level and variable-level, the proposed hierarchical fault isolation method can sort out candidates for the rooting causality analysis of the detected fault, respectively. Depending on the causal analysis, the rooting cause can be identified from the intersection of two candidate sets, thereby virtualizing the propagation path of a fault. Lastly, the presented methodology of distributed process monitoring is verified by a numeral case study and the Tennessee Eastman (TE) benchmarking platform, respectively. The conclusions show that the presented methodology can perform more accurately and efficiently than traditional approaches. In particular, the proposed method can detect simulated faults in a mathematical case and the fault 15 in the TE process with nearly 100 % and 94.72 %, respectively, in terms of fault detection rates, which is barely achieved by reported methods</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"146 ","pages":"Article 103367"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424002075","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed process monitoring gains popularity recently to perform system health management for large-scale industrial processes and support the decision-making for system maintenance. However, process monitoring for complex large -scale systems using distributed approaches is often challenging due to significant nexus among variables. Therefore, this article proposed a novel distributed process monitoring method to achieve efficient monitoring with a reasonable and interpretable division scheme which is only given by the spatial distribution of each variable and the results of Granger causality analysis. At each subblock, a local canonical variate analysis model with Wasserstein-distance-based indices can be built to monitor each local system. With the help of a Bayesian inference strategy, all the local monitoring results are fused into a global one. Then, from both block-level and variable-level, the proposed hierarchical fault isolation method can sort out candidates for the rooting causality analysis of the detected fault, respectively. Depending on the causal analysis, the rooting cause can be identified from the intersection of two candidate sets, thereby virtualizing the propagation path of a fault. Lastly, the presented methodology of distributed process monitoring is verified by a numeral case study and the Tennessee Eastman (TE) benchmarking platform, respectively. The conclusions show that the presented methodology can perform more accurately and efficiently than traditional approaches. In particular, the proposed method can detect simulated faults in a mathematical case and the fault 15 in the TE process with nearly 100 % and 94.72 %, respectively, in terms of fault detection rates, which is barely achieved by reported methods
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Process Control
Journal of Process Control 工程技术-工程:化工
CiteScore
7.00
自引率
11.90%
发文量
159
审稿时长
74 days
期刊介绍: This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others. Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques. Topics covered include: • Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.
期刊最新文献
Editorial Board Subspace identification of Hammerstein models with interval uncertainties Adaptive design of delay timers for non-stationary process variables based on change detection and Bayesian estimation Mixed logical dynamical (MLD)-based Kalman filter for hybrid systems fault diagnosis A novel explainable propagation-based fault diagnosis approach for Clean-In-Place by establishing Boolean network model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1