Fuzzy decision support system for english language teaching with corpus data

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Egyptian Informatics Journal Pub Date : 2025-01-26 DOI:10.1016/j.eij.2025.100612
Meilin Huang
{"title":"Fuzzy decision support system for english language teaching with corpus data","authors":"Meilin Huang","doi":"10.1016/j.eij.2025.100612","DOIUrl":null,"url":null,"abstract":"<div><div>Corpus data from the past and novice observations are useful in improving the adeptness of English language teaching in high schools. Optimization methods support this adeptness through fine-tuning processes acquired from the corpus data. Hence, this article introduces a Progression-focused Teaching System (PTS) optimized by Fuzzy Decision (FD). This system focuses on identifying and providing solutions for lexical placement errors. Focusing on the progression of English teaching with high-quality outputs, lexical arrangement, and error reduction is pursued. The fuzzy decision system identifies a maximum precision output from the possible lexical placement in teaching vocabulary. In this decision process, the teaching efficiency towards the specific output is tuned through personalized training recommendations. The fuzzy output is used to benchmark the maximum precision output for further teaching references. Therefore, a consistent progression in teaching English vocabulary is attained by rectifying the errors in the previous corpus inputs.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"29 ","pages":"Article 100612"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866525000040","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Corpus data from the past and novice observations are useful in improving the adeptness of English language teaching in high schools. Optimization methods support this adeptness through fine-tuning processes acquired from the corpus data. Hence, this article introduces a Progression-focused Teaching System (PTS) optimized by Fuzzy Decision (FD). This system focuses on identifying and providing solutions for lexical placement errors. Focusing on the progression of English teaching with high-quality outputs, lexical arrangement, and error reduction is pursued. The fuzzy decision system identifies a maximum precision output from the possible lexical placement in teaching vocabulary. In this decision process, the teaching efficiency towards the specific output is tuned through personalized training recommendations. The fuzzy output is used to benchmark the maximum precision output for further teaching references. Therefore, a consistent progression in teaching English vocabulary is attained by rectifying the errors in the previous corpus inputs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
期刊最新文献
Multistep prediction for egg prices: An efficient sequence-to-sequence network A multi-objective fuzzy model based on enhanced artificial fish Swarm for multiple RNA sequences alignment A road lane detection approach based on reformer model Advanced segmentation method for integrating multi-omics data for early cancer detection Innovation of teaching mechanism of music course integrating artificial intelligence technology: ITMMCAI-MCA-ACNN approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1