Periodicity-based multi-dimensional interaction convolution network with multi-scale feature fusion for motor imagery EEG classification

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Neuroscience Methods Pub Date : 2024-12-25 DOI:10.1016/j.jneumeth.2024.110356
Yunshuo Dai, Xiao Deng, Xiuli Fu, Yixin Zhao
{"title":"Periodicity-based multi-dimensional interaction convolution network with multi-scale feature fusion for motor imagery EEG classification","authors":"Yunshuo Dai,&nbsp;Xiao Deng,&nbsp;Xiuli Fu,&nbsp;Yixin Zhao","doi":"10.1016/j.jneumeth.2024.110356","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The Motor Imagery (MI)-based Brain-Computer Interface (BCI) has vast potential in fields such as medical rehabilitation and control engineering. In recent years, MI decoding methods based on deep learning have gained extensive attention. However, capturing the complex dynamic changes in EEG signals remains a challenge, and the decoding performance still needs further improvement.</div></div><div><h3>New methods</h3><div>The paper proposes a novel method, Periodicity-based Multi-Dimensional Interaction Convolution Network with Multi-Scale Feature Fusion (PMD-MSNet), for MI-EEG signal classification. It converts 1D EEG signals into multi-period 2D tensors to capture intra-period and inter-period variations and enables cross-dimensional interaction based on periodic features. Subsequently, parallel multi-scale convolution is utilized to adaptively extract temporal, frequency, and time-frequency features.</div></div><div><h3>Results</h3><div>Experimental results on the BCI IV-2a dataset demonstrate that the PMD-MSNet model achieves a classification accuracy of 82.25 % on average and a kappa value of 0.763, which significantly outperforms seven other deep learning-based EEG decoding models. The model attained the highest classification accuracy and kappa value among the seven subjects, showcasing its superior performance and robustness.</div></div><div><h3>Conclusions</h3><div>The PMD-MSNet model incorporates periodic features, multi-dimensional interaction mechanisms, multi-scale convolutions to achieve efficient feature extraction and classification of EEG signals, significantly enhancing the performance of MI classification tasks.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"415 ","pages":"Article 110356"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024003017","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The Motor Imagery (MI)-based Brain-Computer Interface (BCI) has vast potential in fields such as medical rehabilitation and control engineering. In recent years, MI decoding methods based on deep learning have gained extensive attention. However, capturing the complex dynamic changes in EEG signals remains a challenge, and the decoding performance still needs further improvement.

New methods

The paper proposes a novel method, Periodicity-based Multi-Dimensional Interaction Convolution Network with Multi-Scale Feature Fusion (PMD-MSNet), for MI-EEG signal classification. It converts 1D EEG signals into multi-period 2D tensors to capture intra-period and inter-period variations and enables cross-dimensional interaction based on periodic features. Subsequently, parallel multi-scale convolution is utilized to adaptively extract temporal, frequency, and time-frequency features.

Results

Experimental results on the BCI IV-2a dataset demonstrate that the PMD-MSNet model achieves a classification accuracy of 82.25 % on average and a kappa value of 0.763, which significantly outperforms seven other deep learning-based EEG decoding models. The model attained the highest classification accuracy and kappa value among the seven subjects, showcasing its superior performance and robustness.

Conclusions

The PMD-MSNet model incorporates periodic features, multi-dimensional interaction mechanisms, multi-scale convolutions to achieve efficient feature extraction and classification of EEG signals, significantly enhancing the performance of MI classification tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
期刊最新文献
Assessment of voluntary drug and alcohol intake in Drosophila melanogaster using a modified one-tube capillary feeding assay Optimization of permeabilized brain tissue preparation to improve the analysis of mitochondrial oxidative capacities in specific subregions of the rat brain Discrete variational autoencoders BERT model-based transcranial focused ultrasound for Alzheimer's disease detection EEG-based fatigue state evaluation by combining complex network and frequency-spatial features Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1