Modeling solar power plant electricity supply chain toward renewable energy consumption

Mohammad Reza Eslami Rasekh , Farzad Mohammad Sharifi , Somaieh Alavi , Nassibeh Janatyan
{"title":"Modeling solar power plant electricity supply chain toward renewable energy consumption","authors":"Mohammad Reza Eslami Rasekh ,&nbsp;Farzad Mohammad Sharifi ,&nbsp;Somaieh Alavi ,&nbsp;Nassibeh Janatyan","doi":"10.1016/j.prime.2025.100907","DOIUrl":null,"url":null,"abstract":"<div><div>This paper aims to introduce a model of the solar plant electricity supply chain, encompassing mixed power plants, transmission lines, and consumers, with a focus on optimization and consideration of uncertainties. Within this article, the supply chain of solar power plants is delineated based on various parameters. The quantities of power plants and solar panels are determined by different priorities, such as investment levels, pollution mitigation, and reduction of gas consumption by conventional power plants, utilizing the particle swarm algorithm for optimal outcomes. The proposed model addresses uncertainties related to electricity demand, solar radiation levels, and consequently, the power production of solar panels, through the application of type 2 fuzzy logic. The optimization of the model is done keeping in mind various constraints including the supply of electricity and the maximum allowed use of solar cells. The innovation of this article is in the design of the supply chain model from the point of view of the uncertainty of electric power production and the amount of consumer demand and the optimal selection of solar panels for solar power plants to minimize the electricity consumption of the gas power plant and the amount of pollution caused by it. Based on the results obtained from the simulation of this article, it has been shown that considering the maximum investment capacity, up to 76 % of the electric energy can be supplied by building five solar power plants at certain distances from the electric substations around the case study. Considering the maximum weight coefficients for CO<sub>2</sub> plant emissions and gas consumption, five solar power plants are the optimal number that is achieved by proposed algorithm. The power capacity of five solar power plants is optimized <span><math><mrow><mn>4.100</mn><mo>,</mo><mspace></mspace><mn>4.222</mn><mo>,</mo><mspace></mspace><mn>3.920</mn><mo>,</mo><mspace></mspace><mn>4.375</mn><mspace></mspace></mrow></math></span>and <span><math><mrow><mn>3.991</mn><mspace></mspace><mi>M</mi><mi>W</mi></mrow></math></span>, respectively. To evaluation of the proposed model, PSO algorithm is compared to GA and the results show that cost function and convergence time in PSO is less than GA in the various weight coefficients scenarios. This optimal mode leads to the maximum reduction of gas consumption in the gas power plant, and on the other hand, the amount of pollution is minimized. The prediction of this number of power plants with different priorities is presented in this article and different policies can be considered strategically for this model of the supply chain.</div></div>","PeriodicalId":100488,"journal":{"name":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","volume":"11 ","pages":"Article 100907"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772671125000142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to introduce a model of the solar plant electricity supply chain, encompassing mixed power plants, transmission lines, and consumers, with a focus on optimization and consideration of uncertainties. Within this article, the supply chain of solar power plants is delineated based on various parameters. The quantities of power plants and solar panels are determined by different priorities, such as investment levels, pollution mitigation, and reduction of gas consumption by conventional power plants, utilizing the particle swarm algorithm for optimal outcomes. The proposed model addresses uncertainties related to electricity demand, solar radiation levels, and consequently, the power production of solar panels, through the application of type 2 fuzzy logic. The optimization of the model is done keeping in mind various constraints including the supply of electricity and the maximum allowed use of solar cells. The innovation of this article is in the design of the supply chain model from the point of view of the uncertainty of electric power production and the amount of consumer demand and the optimal selection of solar panels for solar power plants to minimize the electricity consumption of the gas power plant and the amount of pollution caused by it. Based on the results obtained from the simulation of this article, it has been shown that considering the maximum investment capacity, up to 76 % of the electric energy can be supplied by building five solar power plants at certain distances from the electric substations around the case study. Considering the maximum weight coefficients for CO2 plant emissions and gas consumption, five solar power plants are the optimal number that is achieved by proposed algorithm. The power capacity of five solar power plants is optimized 4.100,4.222,3.920,4.375and 3.991MW, respectively. To evaluation of the proposed model, PSO algorithm is compared to GA and the results show that cost function and convergence time in PSO is less than GA in the various weight coefficients scenarios. This optimal mode leads to the maximum reduction of gas consumption in the gas power plant, and on the other hand, the amount of pollution is minimized. The prediction of this number of power plants with different priorities is presented in this article and different policies can be considered strategically for this model of the supply chain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Modular nine-level single-phase inverter with quadruple voltage gain using reduced blocking voltage switches Identification of multiple power quality disturbances in hybrid microgrid using deep stacked auto-encoder based bi-directional LSTM classifier Exponential function LMS and fractional order pid based voltage power quality enhancement in distribution network A new discrete GaN-based dv/dt control circuit for megahertz frequency power converters Anomaly detection of adversarial cyber attacks on electric vehicle charging stations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1