What does the slope of stress–stretch curves tell us about vascular tissue response?

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2025-01-28 DOI:10.1016/j.jmbbm.2025.106906
Jia Lu , Ferdinando Auricchio
{"title":"What does the slope of stress–stretch curves tell us about vascular tissue response?","authors":"Jia Lu ,&nbsp;Ferdinando Auricchio","doi":"10.1016/j.jmbbm.2025.106906","DOIUrl":null,"url":null,"abstract":"<div><div>We examined a group of 50 uniaxial stress–stretch curves obtained from human ascending aortic aneurysm tissues. The curves were believed to be associated with elastic response because the stress is monotonically increasing in all curves, and so is the slope. However, 26 curves exhibit exponential-like slope while the remaining 24 curves have sigmoid slopes. We hypothesized that the slope patterns stemmed from collage waviness distribution. A structural constitutive model was introduced to describe the responses. The model employed a unimodal density function to describe the waviness distribution, from which a two-phase response ensued. In the first phase the slope is quasi-exponential, and in the second phase the slope is sigmoid. The model fitted all 50 curves perfectly well. An exponential model was also introduced for a comparison. The model fitted the curves of quasi-exponential slope generally well, but performed worse over the curves of sigmoid slope. The work suggests that the slope may encode significant information about collagen waviness, and underscores a limitation of exponential-based models.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"164 ","pages":"Article 106906"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125000220","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We examined a group of 50 uniaxial stress–stretch curves obtained from human ascending aortic aneurysm tissues. The curves were believed to be associated with elastic response because the stress is monotonically increasing in all curves, and so is the slope. However, 26 curves exhibit exponential-like slope while the remaining 24 curves have sigmoid slopes. We hypothesized that the slope patterns stemmed from collage waviness distribution. A structural constitutive model was introduced to describe the responses. The model employed a unimodal density function to describe the waviness distribution, from which a two-phase response ensued. In the first phase the slope is quasi-exponential, and in the second phase the slope is sigmoid. The model fitted all 50 curves perfectly well. An exponential model was also introduced for a comparison. The model fitted the curves of quasi-exponential slope generally well, but performed worse over the curves of sigmoid slope. The work suggests that the slope may encode significant information about collagen waviness, and underscores a limitation of exponential-based models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
期刊最新文献
Editorial Board Cytocompatibility, fibroblast adhesion and proliferation on surface modified 3D-printed PEEK scaffolds Editorial Board Bone mechanical behavior around dental implants: Densification and deformation follow-up by in-situ computed tomography Simulation of a Free Boundary Cell Migration Model through Physics Informed Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1