Yujiang Wang , Marshima Mohd Rosli , Norzilah Musa , Lei Wang
{"title":"Improving clustering-based and adaptive position-aware interpolation oversampling for imbalanced data classification","authors":"Yujiang Wang , Marshima Mohd Rosli , Norzilah Musa , Lei Wang","doi":"10.1016/j.jksuci.2024.102253","DOIUrl":null,"url":null,"abstract":"<div><div>Class imbalance is one of the most significant difficulties in modern machine learning. This is because of the inherent bias of standard classifiers toward favoring majority instances while often ignoring minority instances. Interpolation-based oversampling techniques are among the most popular solutions for generating synthetic minority samples to correct imbalanced class distributions. However, synthetic minority samples have a risk of overlapping with the majority-class samples. Inappropriate interpolation of minority samples during oversampling can also result in over generalization. To overcome these drawbacks, we propose a Clustering-based and Adaptive Position-aware Interpolation Oversampling algorithm (CAPAIO) for imbalanced binary dataset classification. CAPAIO initially employs an improved density-based clustering algorithm to group minority instances into inland, borderline, and trapped samples. It then adaptively determines the size of each subcluster and allocates weights to minority samples, guiding the synthesis of minority samples based on these weights. Finally, distinct interpolation oversampling algorithms are individually performed on these three categories of minority samples. The experimental results demonstrate the effectiveness of the proposed CAPAIO in most datasets compared with eleven other oversampling algorithms.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 10","pages":"Article 102253"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824003422","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Class imbalance is one of the most significant difficulties in modern machine learning. This is because of the inherent bias of standard classifiers toward favoring majority instances while often ignoring minority instances. Interpolation-based oversampling techniques are among the most popular solutions for generating synthetic minority samples to correct imbalanced class distributions. However, synthetic minority samples have a risk of overlapping with the majority-class samples. Inappropriate interpolation of minority samples during oversampling can also result in over generalization. To overcome these drawbacks, we propose a Clustering-based and Adaptive Position-aware Interpolation Oversampling algorithm (CAPAIO) for imbalanced binary dataset classification. CAPAIO initially employs an improved density-based clustering algorithm to group minority instances into inland, borderline, and trapped samples. It then adaptively determines the size of each subcluster and allocates weights to minority samples, guiding the synthesis of minority samples based on these weights. Finally, distinct interpolation oversampling algorithms are individually performed on these three categories of minority samples. The experimental results demonstrate the effectiveness of the proposed CAPAIO in most datasets compared with eleven other oversampling algorithms.
期刊介绍:
In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.