{"title":"HitDIC software with graphical user interface for automatic development of diffusion databases in multicomponent alloys","authors":"Jing Zhong, Haoyue Ling, Shiyao Chen, Jing Yang, Lijun Zhang","doi":"10.1016/j.calphad.2024.102794","DOIUrl":null,"url":null,"abstract":"<div><div>Diffusion databases serve as essential parameters for computational simulations and designs of materials. But how to efficiently acquire diffusion information remains as one challenging task for the construction of material databases. The HitDIC (High-throughput Determination of Interdiffusion Coefficients) software integrates numerical inverse method, atomic mobility parameter uncertainty quantification method, and automated parameter optimization method, providing algorithms support for the automated construction of multicomponent alloy diffusion databases. To elevate the user experience and streamline interactions, an intuitive user interface is therefore currently designed and developed. Data curation, pre-processing and algorithm-driven assessment aiming at developing high-quality atomic mobility database are therefore made accessible to users with varying levels of technical expertise. Post-processing and manipulating diffusion information from developed diffusion database are also provided so as to facilitate their applications for material computational design based on diffusion data. One can freely access to the Windows version of HitDIC with graphical user interface released through <span><span>https://hitdic.com</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"88 ","pages":"Article 102794"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591624001366","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Diffusion databases serve as essential parameters for computational simulations and designs of materials. But how to efficiently acquire diffusion information remains as one challenging task for the construction of material databases. The HitDIC (High-throughput Determination of Interdiffusion Coefficients) software integrates numerical inverse method, atomic mobility parameter uncertainty quantification method, and automated parameter optimization method, providing algorithms support for the automated construction of multicomponent alloy diffusion databases. To elevate the user experience and streamline interactions, an intuitive user interface is therefore currently designed and developed. Data curation, pre-processing and algorithm-driven assessment aiming at developing high-quality atomic mobility database are therefore made accessible to users with varying levels of technical expertise. Post-processing and manipulating diffusion information from developed diffusion database are also provided so as to facilitate their applications for material computational design based on diffusion data. One can freely access to the Windows version of HitDIC with graphical user interface released through https://hitdic.com.
期刊介绍:
The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.