3D neural architecture search to optimize segmentation of plant parts

IF 6.3 Q1 AGRICULTURAL ENGINEERING Smart agricultural technology Pub Date : 2025-01-11 DOI:10.1016/j.atech.2025.100776
Farah Saeed , Chenjiao Tan , Tianming Liu , Changying Li
{"title":"3D neural architecture search to optimize segmentation of plant parts","authors":"Farah Saeed ,&nbsp;Chenjiao Tan ,&nbsp;Tianming Liu ,&nbsp;Changying Li","doi":"10.1016/j.atech.2025.100776","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately segmenting plant parts from imagery is vital for improving crop phenotypic traits. However, current 3D deep learning models for segmentation in point cloud data require specific network architectures that are usually manually designed, which is both tedious and suboptimal. To overcome this issue, a 3D neural architecture search (NAS) was performed in this study to optimize cotton plant part segmentation. The search space was designed using Point Voxel Convolution (PVConv) as the basic building block of the network. The NAS framework included a supernetwork with weight sharing and an evolutionary search to find optimal candidates, with three surrogate learners to predict mean IoU, latency, and memory footprint. The optimal candidate searched from the proposed method consisted of five PVConv layers with either 32 or 512 output channels, achieving mean IoU and accuracy of over 90 % and 96 %, respectively, and outperforming manually designed architectures. Additionally, the evolutionary search was updated to search for architectures satisfying memory and time constraints, with searched architectures achieving mean IoU and accuracy of &gt;84 % and 94 %, respectively. Furthermore, a differentiable architecture search (DARTS) utilizing PVConv operation was implemented for comparison, and our method demonstrated better segmentation performance with a margin of &gt;2 % and 1 % in mean IoU and accuracy, respectively. Overall, the proposed method can be applied to segment cotton plants with an accuracy over 94 %, while adjusting to available resource constraints.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"10 ","pages":"Article 100776"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525000103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately segmenting plant parts from imagery is vital for improving crop phenotypic traits. However, current 3D deep learning models for segmentation in point cloud data require specific network architectures that are usually manually designed, which is both tedious and suboptimal. To overcome this issue, a 3D neural architecture search (NAS) was performed in this study to optimize cotton plant part segmentation. The search space was designed using Point Voxel Convolution (PVConv) as the basic building block of the network. The NAS framework included a supernetwork with weight sharing and an evolutionary search to find optimal candidates, with three surrogate learners to predict mean IoU, latency, and memory footprint. The optimal candidate searched from the proposed method consisted of five PVConv layers with either 32 or 512 output channels, achieving mean IoU and accuracy of over 90 % and 96 %, respectively, and outperforming manually designed architectures. Additionally, the evolutionary search was updated to search for architectures satisfying memory and time constraints, with searched architectures achieving mean IoU and accuracy of >84 % and 94 %, respectively. Furthermore, a differentiable architecture search (DARTS) utilizing PVConv operation was implemented for comparison, and our method demonstrated better segmentation performance with a margin of >2 % and 1 % in mean IoU and accuracy, respectively. Overall, the proposed method can be applied to segment cotton plants with an accuracy over 94 %, while adjusting to available resource constraints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维神经结构搜索优化植物部分的分割
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Artificial intelligence applied to precision livestock farming: A tertiary study WeedsSORT: A weed tracking-by-detection framework for laser weeding applications within precision agriculture Optimization of irrigation and fertigation in smart agriculture: An IoT-based micro-services framework Transfer and deep learning models for daily reference evapotranspiration estimation and forecasting in Spain from local to national scale A new, low-cost ground-based NDVI sensor for manual and automated crop monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1