Identification of soybean planting gaps using machine learning

IF 6.3 Q1 AGRICULTURAL ENGINEERING Smart agricultural technology Pub Date : 2025-01-12 DOI:10.1016/j.atech.2025.100779
Flávia Luize Pereira de Souza , Maurício Acconcia Dias , Tri Deri Setiyono , Sérgio Campos , Luciano Shozo Shiratsuchi , Haiying Tao
{"title":"Identification of soybean planting gaps using machine learning","authors":"Flávia Luize Pereira de Souza ,&nbsp;Maurício Acconcia Dias ,&nbsp;Tri Deri Setiyono ,&nbsp;Sérgio Campos ,&nbsp;Luciano Shozo Shiratsuchi ,&nbsp;Haiying Tao","doi":"10.1016/j.atech.2025.100779","DOIUrl":null,"url":null,"abstract":"<div><div>The identification of planting gaps is essential for optimizing crop management in precision agriculture. Traditional methods, such as manual scouting, are limited in scale and precision. This study evaluates the performance of three machine learning algorithms—Decision Trees, Support Vector Machines (SVM), and Multilayer Perceptron (MLP) Neural Networks—for classifying planting gaps in soybean fields using UAV imagery during the V4 growth stage. The Neural Network and SVM models demonstrated similar results, with the Neural Network achieving an AUC of 0.984, accuracy of 94.5 %, F1 score of 0.945, precision of 94.5 %, and recall of 94.5 %. The SVM model with a Polynomial kernel achieved an AUC of 0.989, accuracy of 95.5 %, F1 score of 0.955, precision of 95.5 %, and recall of 95.5 %. In contrast, the Decision Tree model performed lower, with an AUC of 0.805 and accuracy of 79 %. These results demonstrate the effectiveness of machine learning algorithms, particularly Neural Networks and SVM, in improving planting gap detection, contributing to more precise crop management decisions.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"10 ","pages":"Article 100779"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525000139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of planting gaps is essential for optimizing crop management in precision agriculture. Traditional methods, such as manual scouting, are limited in scale and precision. This study evaluates the performance of three machine learning algorithms—Decision Trees, Support Vector Machines (SVM), and Multilayer Perceptron (MLP) Neural Networks—for classifying planting gaps in soybean fields using UAV imagery during the V4 growth stage. The Neural Network and SVM models demonstrated similar results, with the Neural Network achieving an AUC of 0.984, accuracy of 94.5 %, F1 score of 0.945, precision of 94.5 %, and recall of 94.5 %. The SVM model with a Polynomial kernel achieved an AUC of 0.989, accuracy of 95.5 %, F1 score of 0.955, precision of 95.5 %, and recall of 95.5 %. In contrast, the Decision Tree model performed lower, with an AUC of 0.805 and accuracy of 79 %. These results demonstrate the effectiveness of machine learning algorithms, particularly Neural Networks and SVM, in improving planting gap detection, contributing to more precise crop management decisions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
确定种植间隙对于优化精准农业中的作物管理至关重要。传统方法,如人工侦察,在规模和精度上都受到限制。本研究评估了三种机器学习算法--决策树、支持向量机(SVM)和多层感知器(MLP)神经网络--在 V4 生长阶段使用无人机图像对大豆田种植间隙进行分类的性能。神经网络和 SVM 模型的结果相似,神经网络的 AUC 为 0.984,准确率为 94.5%,F1 得分为 0.945,精确率为 94.5%,召回率为 94.5%。采用多项式核的 SVM 模型的 AUC 为 0.989,准确率为 95.5%,F1 得分为 0.955,精确率为 95.5%,召回率为 95.5%。相比之下,决策树模型的表现较差,AUC 为 0.805,准确率为 79%。这些结果表明,机器学习算法(尤其是神经网络和 SVM)在改进种植间隙检测方面非常有效,有助于做出更精确的作物管理决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Validation of the FERTI-drip model for the evaluation and simulation of fertigation events in drip irrigation Spectral bands vs. vegetation indices: An AutoML approach for processing tomato yield predictions based on Sentinel-2 imagery Factors influencing learning attitude of farmers regarding adoption of farming technologies in farms of Kentucky, USA Precision agriculture for iceberg lettuce: From spatial sensing to per plant decision making and control Soil and crop response to varying planter's downforce in corn and cotton fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1