Smart UAV-assisted rose growth monitoring with improved YOLOv10 and Mamba restoration techniques

IF 6.3 Q1 AGRICULTURAL ENGINEERING Smart agricultural technology Pub Date : 2024-12-18 DOI:10.1016/j.atech.2024.100730
Fan Zhao , Zhiyan Ren , Jiaqi Wang , Qingyang Wu , Dianhan Xi , Xinlei Shao , Yongying Liu , Yijia Chen , Katsunori Mizuno
{"title":"Smart UAV-assisted rose growth monitoring with improved YOLOv10 and Mamba restoration techniques","authors":"Fan Zhao ,&nbsp;Zhiyan Ren ,&nbsp;Jiaqi Wang ,&nbsp;Qingyang Wu ,&nbsp;Dianhan Xi ,&nbsp;Xinlei Shao ,&nbsp;Yongying Liu ,&nbsp;Yijia Chen ,&nbsp;Katsunori Mizuno","doi":"10.1016/j.atech.2024.100730","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in unmanned aerial vehicles (UAVs) technology and deep learning have revolutionized agricultural monitoring, yet challenges remain in processing low-resolution field imagery for precision floriculture. Here, we presented an innovative approach combining state-of-the-art super-resolution reconstruction (SRR) and object detection for accurate rose growth monitoring in large-scale greenhouse environments. We introduced MambaIR, a novel SRR algorithm based on selective state-space models, which significantly outperforms existing methods in enhancing low-resolution UAV imagery (PSNR: 28.34 dB, SSIM: 77.07 %). We also developed ROSE-YOLO, an improved object detection model tailored for rose identification, achieving 95.3 % mean average precision (mAP) on high-resolution images. The synergy between MambaIR and ROSE-YOLO enables 94.4 % mAP on reconstructed super-resolution images, nearly matching high-resolution performance. Through comprehensive experiments and Grad-CAM visualizations, we demonstrated our method's superior focus on key rose features and identify an optimal super-resolution magnification factor balancing detail enhancement and computational efficiency. This integrated approach overcomes resolution limitations in UAV-based agricultural monitoring, offering a scalable and accurate solution for rose growth assessment. Our method reduces technical barriers, offering a scalable and cost-effective solution for greenhouse monitoring by addressing low-resolution imagery challenges and enhancing decision-making processes. This research lays the groundwork for broader applications of UAV and AI technologies in sustainable agriculture. The findings pave the way for advanced, data-driven precision agriculture, integrating deep learning with remote sensing methodologies to improve floriculture management.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"10 ","pages":"Article 100730"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375524003344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in unmanned aerial vehicles (UAVs) technology and deep learning have revolutionized agricultural monitoring, yet challenges remain in processing low-resolution field imagery for precision floriculture. Here, we presented an innovative approach combining state-of-the-art super-resolution reconstruction (SRR) and object detection for accurate rose growth monitoring in large-scale greenhouse environments. We introduced MambaIR, a novel SRR algorithm based on selective state-space models, which significantly outperforms existing methods in enhancing low-resolution UAV imagery (PSNR: 28.34 dB, SSIM: 77.07 %). We also developed ROSE-YOLO, an improved object detection model tailored for rose identification, achieving 95.3 % mean average precision (mAP) on high-resolution images. The synergy between MambaIR and ROSE-YOLO enables 94.4 % mAP on reconstructed super-resolution images, nearly matching high-resolution performance. Through comprehensive experiments and Grad-CAM visualizations, we demonstrated our method's superior focus on key rose features and identify an optimal super-resolution magnification factor balancing detail enhancement and computational efficiency. This integrated approach overcomes resolution limitations in UAV-based agricultural monitoring, offering a scalable and accurate solution for rose growth assessment. Our method reduces technical barriers, offering a scalable and cost-effective solution for greenhouse monitoring by addressing low-resolution imagery challenges and enhancing decision-making processes. This research lays the groundwork for broader applications of UAV and AI technologies in sustainable agriculture. The findings pave the way for advanced, data-driven precision agriculture, integrating deep learning with remote sensing methodologies to improve floriculture management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
YSD-BPTrack: A multi-object tracking framework for calves in occluded environments Validation of the FERTI-drip model for the evaluation and simulation of fertigation events in drip irrigation Spectral bands vs. vegetation indices: An AutoML approach for processing tomato yield predictions based on Sentinel-2 imagery Factors influencing learning attitude of farmers regarding adoption of farming technologies in farms of Kentucky, USA Precision agriculture for iceberg lettuce: From spatial sensing to per plant decision making and control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1