Neutral Mine Drainage prediction for different waste rock lithologies – Case study of Canadian Malartic

IF 3.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geochemical Exploration Pub Date : 2025-01-29 DOI:10.1016/j.gexplo.2025.107685
Vincent Marmier , Benoît Plante , Isabelle Demers , Mostafa Benzaazoua
{"title":"Neutral Mine Drainage prediction for different waste rock lithologies – Case study of Canadian Malartic","authors":"Vincent Marmier ,&nbsp;Benoît Plante ,&nbsp;Isabelle Demers ,&nbsp;Mostafa Benzaazoua","doi":"10.1016/j.gexplo.2025.107685","DOIUrl":null,"url":null,"abstract":"<div><div>Neutral Mine Drainage (NMD) can become a problem if not properly addressed when low sulfide waste rocks are disposed of at mine sites. However, NMD, as opposed to acid mine drainage (AMD), is difficult to predict using classical kinetic tests due to the contaminant immobilization processes that occur, namely sorption and precipitation. A method using modified ethylenediaminetetraacetic acid leaching procedure and sorption tests on a positive control was proposed, which allowed the method to be validated. However, this method needed to be applied to different lithologies to consider the geological variation within orebodies. The risk assessment method was therefore applied to four different lithologies from Canadian Malartic mine. Two lithologies from the Canadian Malartic pit (carbonated porphyry: CPO and carbonated greywacke: CGR) were shown to have sufficient zinc sorption capacity to accommodate the total potential contaminant load. The other two lithologies from the Barnat pit (altered ultramafic: AUM and talc and chlorite schist: TCH) had sorption capacities and potential contaminant contents that were relatively close for Ni, which occurs within talc minerals. The modified kinetic experiments showed that Ni was leached at concentrations &lt;1 mg/L. When Zn is the only metal considered for risk assessment of AUM and TCH, the risk of NMD generation is low. However, if all ions that could potentially occupy the same sorption sites as Zn (Ni, Co, Cu, Mn) are considered, the leaching risk increases. This study indicates that mineralogy should be considered in risk assessment and that further work is needed to include a release factor in the risk assessment of NMD.</div></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"271 ","pages":"Article 107685"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geochemical Exploration","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375674225000172","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Neutral Mine Drainage (NMD) can become a problem if not properly addressed when low sulfide waste rocks are disposed of at mine sites. However, NMD, as opposed to acid mine drainage (AMD), is difficult to predict using classical kinetic tests due to the contaminant immobilization processes that occur, namely sorption and precipitation. A method using modified ethylenediaminetetraacetic acid leaching procedure and sorption tests on a positive control was proposed, which allowed the method to be validated. However, this method needed to be applied to different lithologies to consider the geological variation within orebodies. The risk assessment method was therefore applied to four different lithologies from Canadian Malartic mine. Two lithologies from the Canadian Malartic pit (carbonated porphyry: CPO and carbonated greywacke: CGR) were shown to have sufficient zinc sorption capacity to accommodate the total potential contaminant load. The other two lithologies from the Barnat pit (altered ultramafic: AUM and talc and chlorite schist: TCH) had sorption capacities and potential contaminant contents that were relatively close for Ni, which occurs within talc minerals. The modified kinetic experiments showed that Ni was leached at concentrations <1 mg/L. When Zn is the only metal considered for risk assessment of AUM and TCH, the risk of NMD generation is low. However, if all ions that could potentially occupy the same sorption sites as Zn (Ni, Co, Cu, Mn) are considered, the leaching risk increases. This study indicates that mineralogy should be considered in risk assessment and that further work is needed to include a release factor in the risk assessment of NMD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geochemical Exploration
Journal of Geochemical Exploration 地学-地球化学与地球物理
CiteScore
7.40
自引率
7.70%
发文量
148
审稿时长
8.1 months
期刊介绍: Journal of Geochemical Exploration is mostly dedicated to publication of original studies in exploration and environmental geochemistry and related topics. Contributions considered of prevalent interest for the journal include researches based on the application of innovative methods to: define the genesis and the evolution of mineral deposits including transfer of elements in large-scale mineralized areas. analyze complex systems at the boundaries between bio-geochemistry, metal transport and mineral accumulation. evaluate effects of historical mining activities on the surface environment. trace pollutant sources and define their fate and transport models in the near-surface and surface environments involving solid, fluid and aerial matrices. assess and quantify natural and technogenic radioactivity in the environment. determine geochemical anomalies and set baseline reference values using compositional data analysis, multivariate statistics and geo-spatial analysis. assess the impacts of anthropogenic contamination on ecosystems and human health at local and regional scale to prioritize and classify risks through deterministic and stochastic approaches. Papers dedicated to the presentation of newly developed methods in analytical geochemistry to be applied in the field or in laboratory are also within the topics of interest for the journal.
期刊最新文献
Editorial Board Provenance and uranium source tracing for uranium-bearing series in the south of Songliao Basin: Evidence from zircon UPb chronology and lithogeochemistry The Taragheh titanium-rich karst bauxite deposit, northwestern Iran: Constraints on REE fractionation, Ce anomaly, and provenance Evaluation on rare earth elements and microbial communities in abandoned rare earth tailings Apatite as a proxy for imaging the link between multistage hydrothermal alteration and anomalous gold enrichment in orogenic gold deposits: Evidence from the Jiaodong Peninsula, Eastern China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1