{"title":"Maximum correntropy recursive three-step filter","authors":"Yike Zhang , Xinmin Song , Wei Xing Zheng","doi":"10.1016/j.sysconle.2024.106006","DOIUrl":null,"url":null,"abstract":"<div><div>Recursive three-step filters are often used for state estimation of systems with unknown input direct feedthrough, that is, systems where the unknown input simultaneously affect the state equation and measurement equation. However, when the system is disturbed by non-Gaussian noise, especially heavy-tailed impulsive noise, the performance of such recursive three-step filters will deteriorate. This paper proposes a maximum correntropy recursive three-step filter that can effectively handle non-Gaussian measurement noise pollution. The derivation of this filter is based on the traditional recursive three-step filter and utilizes a maximum correntropy criterion and a fixed-point iterative algorithm to simultaneously estimate the unknown input and state. It is shown that when the kernel bandwidths approach infinity, the derived maximum correntropy recursive three-step filter will degenerate into the traditional recursive three-step filter. Finally, the effectiveness and reliability of the proposed algorithm are demonstrated through simulation experiments.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"196 ","pages":"Article 106006"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691124002949","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Recursive three-step filters are often used for state estimation of systems with unknown input direct feedthrough, that is, systems where the unknown input simultaneously affect the state equation and measurement equation. However, when the system is disturbed by non-Gaussian noise, especially heavy-tailed impulsive noise, the performance of such recursive three-step filters will deteriorate. This paper proposes a maximum correntropy recursive three-step filter that can effectively handle non-Gaussian measurement noise pollution. The derivation of this filter is based on the traditional recursive three-step filter and utilizes a maximum correntropy criterion and a fixed-point iterative algorithm to simultaneously estimate the unknown input and state. It is shown that when the kernel bandwidths approach infinity, the derived maximum correntropy recursive three-step filter will degenerate into the traditional recursive three-step filter. Finally, the effectiveness and reliability of the proposed algorithm are demonstrated through simulation experiments.
期刊介绍:
Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.