Implementation of real time root crop leaf classification using CNN on raspberry-Pi microprocessor

IF 6.3 Q1 AGRICULTURAL ENGINEERING Smart agricultural technology Pub Date : 2024-12-11 DOI:10.1016/j.atech.2024.100714
M.D. Rakesh, M. Jeevankumar, S.B. Rudraswamy
{"title":"Implementation of real time root crop leaf classification using CNN on raspberry-Pi microprocessor","authors":"M.D. Rakesh,&nbsp;M. Jeevankumar,&nbsp;S.B. Rudraswamy","doi":"10.1016/j.atech.2024.100714","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents the implementation of deep learning models for classifying root crop leaves, specifically beetroot, potato, radish, and sweet potato. Applying ResNet50 and DenseNet121 architectures, the work demonstrates the classification based on a comprehensive dataset of over 2,500 images collected from various locations across Karnataka, India. Both models exhibited good performance, with ResNet50 achieving 99.60 % accuracy and DenseNet121 attaining 97.60 %. The models maintained high precision, recall, and F1 scores across all classes, using CPU. A key achievement was the successful deployment of these models on a Raspberry Pi 4B, with ResNet50 maintaining its high accuracy with 99.60 % and DenseNet121 achieving 96.81 % accuracy on this resource constrained device. The practical applicability was further validated through field testing, where the Raspberry Pi 4B setup was mounted on a vehicle with the webcam to capture root crop leaves in real time and successfully tested in actual agricultural field. This demonstrated the system's viability for real-time crop classification. The outcomes highlight the promise of deep learning models in agriculture technology by providing a dependable, effective, and portable method for classifying root crop leaves. The consistent high accuracy maintained across different hardware platforms and in real-world conditions demonstrates the robustness and versatility of the developed models.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"10 ","pages":"Article 100714"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375524003186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents the implementation of deep learning models for classifying root crop leaves, specifically beetroot, potato, radish, and sweet potato. Applying ResNet50 and DenseNet121 architectures, the work demonstrates the classification based on a comprehensive dataset of over 2,500 images collected from various locations across Karnataka, India. Both models exhibited good performance, with ResNet50 achieving 99.60 % accuracy and DenseNet121 attaining 97.60 %. The models maintained high precision, recall, and F1 scores across all classes, using CPU. A key achievement was the successful deployment of these models on a Raspberry Pi 4B, with ResNet50 maintaining its high accuracy with 99.60 % and DenseNet121 achieving 96.81 % accuracy on this resource constrained device. The practical applicability was further validated through field testing, where the Raspberry Pi 4B setup was mounted on a vehicle with the webcam to capture root crop leaves in real time and successfully tested in actual agricultural field. This demonstrated the system's viability for real-time crop classification. The outcomes highlight the promise of deep learning models in agriculture technology by providing a dependable, effective, and portable method for classifying root crop leaves. The consistent high accuracy maintained across different hardware platforms and in real-world conditions demonstrates the robustness and versatility of the developed models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
YSD-BPTrack: A multi-object tracking framework for calves in occluded environments Validation of the FERTI-drip model for the evaluation and simulation of fertigation events in drip irrigation Spectral bands vs. vegetation indices: An AutoML approach for processing tomato yield predictions based on Sentinel-2 imagery Factors influencing learning attitude of farmers regarding adoption of farming technologies in farms of Kentucky, USA Precision agriculture for iceberg lettuce: From spatial sensing to per plant decision making and control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1