Cooperative Localization of Multi-Agent Autonomous Aerial Vehicle (AAV) Networks in Intelligent Transportation Systems

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Open Journal of Intelligent Transportation Systems Pub Date : 2025-01-20 DOI:10.1109/OJITS.2025.3531363
S. Shahkar
{"title":"Cooperative Localization of Multi-Agent Autonomous Aerial Vehicle (AAV) Networks in Intelligent Transportation Systems","authors":"S. Shahkar","doi":"10.1109/OJITS.2025.3531363","DOIUrl":null,"url":null,"abstract":"GNSS-independent localization is one of the most prominent research problems in aerial autonomous systems navigation, especially in certain applications where Simultaneous Localization and Mapping (SLAM) methods are inapplicable due to the complexity of the environment, or in open-air spaces where a flock of Autonomous Aerial Vehicles (AAVs) navigate in a GNSS-independent fashion. This paper introduces a filter through which AAVs form a multi-agent Cellular Vehicle-to-Everything (C-V2X) network to exchange their estimated positions, and eventually achieve a group consensus over the true position of each vehicle. The localization error correction takes place in the filter with reference to the AAV’s relative range from neighbouring vehicles, that is measured by onboard ranging devices. It is shown that in ideal situations where rangefinder errors can be neglected, cooperative localization yields perfect localization, if the network is sufficiently large and sufficiently connected. It is also shown that the accuracy of cooperative localization is superior to the existing least-mean-square-error based techniques, where a centralized controller augments the positioning accuracy of the flock. Cooperative localization is also favourable due to the fact that the process is computationally affordable and fully distributed. Theoretical derivations and results have been validated through case studies and Monte Carlo simulations, and suggest cooperative localization as a complementary navigation technique to odometery, and other advanced solutions that are available in the literature.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"6 ","pages":"49-66"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10845814","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10845814/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

GNSS-independent localization is one of the most prominent research problems in aerial autonomous systems navigation, especially in certain applications where Simultaneous Localization and Mapping (SLAM) methods are inapplicable due to the complexity of the environment, or in open-air spaces where a flock of Autonomous Aerial Vehicles (AAVs) navigate in a GNSS-independent fashion. This paper introduces a filter through which AAVs form a multi-agent Cellular Vehicle-to-Everything (C-V2X) network to exchange their estimated positions, and eventually achieve a group consensus over the true position of each vehicle. The localization error correction takes place in the filter with reference to the AAV’s relative range from neighbouring vehicles, that is measured by onboard ranging devices. It is shown that in ideal situations where rangefinder errors can be neglected, cooperative localization yields perfect localization, if the network is sufficiently large and sufficiently connected. It is also shown that the accuracy of cooperative localization is superior to the existing least-mean-square-error based techniques, where a centralized controller augments the positioning accuracy of the flock. Cooperative localization is also favourable due to the fact that the process is computationally affordable and fully distributed. Theoretical derivations and results have been validated through case studies and Monte Carlo simulations, and suggest cooperative localization as a complementary navigation technique to odometery, and other advanced solutions that are available in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Open Journal of Intelligent Transportation Systems Vol. 5 Safety-Critical Oracles for Metamorphic Testing of Deep Learning LiDAR Point Cloud Object Detectors Front Cover IEEE Open Journal of Intelligent Transportation Systems Instructions for Authors IEEE OPEN JOURNAL OF THE INTELLIGENT TRANSPORTATION SYSTEMS SOCIETY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1