FEM modelling of hydrogen embrittlement in API 5L X65 steel for safe hydrogen transportation

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Mechanical and Materials Engineering Pub Date : 2025-02-05 DOI:10.1186/s40712-025-00221-y
Shaghayegh Nazar, Sebastian Lipiec, Edoardo Proverbio
{"title":"FEM modelling of hydrogen embrittlement in API 5L X65 steel for safe hydrogen transportation","authors":"Shaghayegh Nazar,&nbsp;Sebastian Lipiec,&nbsp;Edoardo Proverbio","doi":"10.1186/s40712-025-00221-y","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen is crucial for decarbonization efforts due to its abundance, environmental friendliness, and versatility. To maximize its potential, an efficient transportation infrastructure is essential. While utilizing the natural gas pipeline network for transporting hydrogen is cost-effective, hydrogen embrittlement (HE) poses a significant challenge. When hydrogen enters the metal, it significantly compromises its fracture toughness. This study investigates the impact of high-pressure hydrogen on the mechanical properties of API 5L X65 carbon steel through a combined experimental and computational approach. To quantify the extent of HE, tensile tests were performed on identical specimens, one set pre-exposed to high-pressure hydrogen and another set kept in an inert environment for comparison. Finite element modelling, employing the Bai-Wierzbicki material model (BWMM), was used to simulate the material behaviour under large plastic deformations and correlate with experimental results. This synergistic approach integrates experimental data with simulations, creating a framework for predicting and preventing catastrophic failures.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00221-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-025-00221-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen is crucial for decarbonization efforts due to its abundance, environmental friendliness, and versatility. To maximize its potential, an efficient transportation infrastructure is essential. While utilizing the natural gas pipeline network for transporting hydrogen is cost-effective, hydrogen embrittlement (HE) poses a significant challenge. When hydrogen enters the metal, it significantly compromises its fracture toughness. This study investigates the impact of high-pressure hydrogen on the mechanical properties of API 5L X65 carbon steel through a combined experimental and computational approach. To quantify the extent of HE, tensile tests were performed on identical specimens, one set pre-exposed to high-pressure hydrogen and another set kept in an inert environment for comparison. Finite element modelling, employing the Bai-Wierzbicki material model (BWMM), was used to simulate the material behaviour under large plastic deformations and correlate with experimental results. This synergistic approach integrates experimental data with simulations, creating a framework for predicting and preventing catastrophic failures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氢因其丰富、环保和多功能性,对去碳化工作至关重要。要最大限度地发挥其潜力,高效的运输基础设施必不可少。虽然利用天然气管道网络运输氢气具有成本效益,但氢脆(HE)却带来了巨大挑战。当氢进入金属时,会严重影响其断裂韧性。本研究通过实验和计算相结合的方法,研究了高压氢对 API 5L X65 碳钢机械性能的影响。为了量化高压氢的程度,对相同的试样进行了拉伸试验,其中一组试样预先暴露在高压氢中,另一组试样则保持在惰性环境中进行对比。采用 Bai-Wierzbicki 材料模型 (BWMM) 进行有限元建模,模拟材料在大塑性变形下的行为,并与实验结果进行对比。这种协同方法整合了实验数据和模拟结果,为预测和预防灾难性故障提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊最新文献
Quantum size effects and tailoring the electron energy levels in semiconductors: comparison study on AlxGa1-xAs and GaxIn1-xAs quantum wires Rheological investigations and swelling behavior of gum ghatti-cl-poly(acrylic acid) hydrogel reinforced with graphene oxide Physiochemical performance of electrospun PLA-lignin and PVA-lignin FEM modelling of hydrogen embrittlement in API 5L X65 steel for safe hydrogen transportation Sol–gel synthesis of silicon oxide (SiO2) nanoparticles: exploring gas sensing and photocatalytic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1