{"title":"Dirac Fermions with Electric Dipole Moment and Position-dependent Mass in the Presence of a Magnetic Field Generated by Magnetic Monopoles","authors":"R. R. S. Oliveira","doi":"10.1007/s10773-025-05901-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we determine the bound-state solutions for Dirac fermions with electric dipole moment (EDM) and position-dependent mass (PDM) in the presence of a radial magnetic field generated by magnetic monopoles. To achieve this, we work with the <span>\\((2+1)\\)</span>-dimensional (DE) Dirac equation with nonminimal coupling in polar coordinates. Posteriorly, we obtain a second-order differential equation via quadratic DE. Solving this differential equation through a change of variable and the asymptotic behavior, we obtain a generalized Laguerre equation. From this, we obtain the bound-state solutions of the system, given by the two-component Dirac spinor and by the relativistic energy spectrum. So, we note that such spinor is written in terms of the generalized Laguerre polynomials, and such spectrum (for a fermion and an antifermion) is quantized in terms of the radial and total magnetic quantum numbers <i>n</i> and <span>\\(m_j\\)</span>, and explicitly depends on the EDM <i>d</i>, PDM parameter <span>\\(\\kappa \\)</span>, magnetic charge density <span>\\(\\lambda _m\\)</span>, and on the spinorial parameter <i>s</i>. In particular, the quantization is a direct result of the existence of <span>\\(\\kappa \\)</span> (i.e., <span>\\(\\kappa \\)</span> acts as a kind of “external field or potential”). Besides, we also analyze the nonrelativistic limit of our results, that is, we also obtain the nonrelativistic bound-state solutions. In both cases (relativistic and nonrelativistic), we discuss in detail the characteristics of the spectrum as well as graphically analyze its behavior as a function of <span>\\(\\kappa \\)</span> and <span>\\(\\lambda _m\\)</span> for three different values of <i>n</i> (ground state and the first two excited states).</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-05901-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we determine the bound-state solutions for Dirac fermions with electric dipole moment (EDM) and position-dependent mass (PDM) in the presence of a radial magnetic field generated by magnetic monopoles. To achieve this, we work with the \((2+1)\)-dimensional (DE) Dirac equation with nonminimal coupling in polar coordinates. Posteriorly, we obtain a second-order differential equation via quadratic DE. Solving this differential equation through a change of variable and the asymptotic behavior, we obtain a generalized Laguerre equation. From this, we obtain the bound-state solutions of the system, given by the two-component Dirac spinor and by the relativistic energy spectrum. So, we note that such spinor is written in terms of the generalized Laguerre polynomials, and such spectrum (for a fermion and an antifermion) is quantized in terms of the radial and total magnetic quantum numbers n and \(m_j\), and explicitly depends on the EDM d, PDM parameter \(\kappa \), magnetic charge density \(\lambda _m\), and on the spinorial parameter s. In particular, the quantization is a direct result of the existence of \(\kappa \) (i.e., \(\kappa \) acts as a kind of “external field or potential”). Besides, we also analyze the nonrelativistic limit of our results, that is, we also obtain the nonrelativistic bound-state solutions. In both cases (relativistic and nonrelativistic), we discuss in detail the characteristics of the spectrum as well as graphically analyze its behavior as a function of \(\kappa \) and \(\lambda _m\) for three different values of n (ground state and the first two excited states).
期刊介绍:
International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.