Dirac Fermions with Electric Dipole Moment and Position-dependent Mass in the Presence of a Magnetic Field Generated by Magnetic Monopoles

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY International Journal of Theoretical Physics Pub Date : 2025-02-05 DOI:10.1007/s10773-025-05901-1
R. R. S. Oliveira
{"title":"Dirac Fermions with Electric Dipole Moment and Position-dependent Mass in the Presence of a Magnetic Field Generated by Magnetic Monopoles","authors":"R. R. S. Oliveira","doi":"10.1007/s10773-025-05901-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we determine the bound-state solutions for Dirac fermions with electric dipole moment (EDM) and position-dependent mass (PDM) in the presence of a radial magnetic field generated by magnetic monopoles. To achieve this, we work with the <span>\\((2+1)\\)</span>-dimensional (DE) Dirac equation with nonminimal coupling in polar coordinates. Posteriorly, we obtain a second-order differential equation via quadratic DE. Solving this differential equation through a change of variable and the asymptotic behavior, we obtain a generalized Laguerre equation. From this, we obtain the bound-state solutions of the system, given by the two-component Dirac spinor and by the relativistic energy spectrum. So, we note that such spinor is written in terms of the generalized Laguerre polynomials, and such spectrum (for a fermion and an antifermion) is quantized in terms of the radial and total magnetic quantum numbers <i>n</i> and <span>\\(m_j\\)</span>, and explicitly depends on the EDM <i>d</i>, PDM parameter <span>\\(\\kappa \\)</span>, magnetic charge density <span>\\(\\lambda _m\\)</span>, and on the spinorial parameter <i>s</i>. In particular, the quantization is a direct result of the existence of <span>\\(\\kappa \\)</span> (i.e., <span>\\(\\kappa \\)</span> acts as a kind of “external field or potential”). Besides, we also analyze the nonrelativistic limit of our results, that is, we also obtain the nonrelativistic bound-state solutions. In both cases (relativistic and nonrelativistic), we discuss in detail the characteristics of the spectrum as well as graphically analyze its behavior as a function of <span>\\(\\kappa \\)</span> and <span>\\(\\lambda _m\\)</span> for three different values of <i>n</i> (ground state and the first two excited states).</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-05901-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we determine the bound-state solutions for Dirac fermions with electric dipole moment (EDM) and position-dependent mass (PDM) in the presence of a radial magnetic field generated by magnetic monopoles. To achieve this, we work with the \((2+1)\)-dimensional (DE) Dirac equation with nonminimal coupling in polar coordinates. Posteriorly, we obtain a second-order differential equation via quadratic DE. Solving this differential equation through a change of variable and the asymptotic behavior, we obtain a generalized Laguerre equation. From this, we obtain the bound-state solutions of the system, given by the two-component Dirac spinor and by the relativistic energy spectrum. So, we note that such spinor is written in terms of the generalized Laguerre polynomials, and such spectrum (for a fermion and an antifermion) is quantized in terms of the radial and total magnetic quantum numbers n and \(m_j\), and explicitly depends on the EDM d, PDM parameter \(\kappa \), magnetic charge density \(\lambda _m\), and on the spinorial parameter s. In particular, the quantization is a direct result of the existence of \(\kappa \) (i.e., \(\kappa \) acts as a kind of “external field or potential”). Besides, we also analyze the nonrelativistic limit of our results, that is, we also obtain the nonrelativistic bound-state solutions. In both cases (relativistic and nonrelativistic), we discuss in detail the characteristics of the spectrum as well as graphically analyze its behavior as a function of \(\kappa \) and \(\lambda _m\) for three different values of n (ground state and the first two excited states).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
期刊最新文献
Responses of AdS Black Holes to the Collective Influence of Quintessence and String Cloud Conclusive High-dimensional Multiparty Quantum State Sharing in Amplitude-damping Channel Quantum Information Splitting of An Arbitrary k-qubit Information Among n-agents Using Greenberger-Horne-Zeilinger States Modeling Synchronized Propagation of Two Symmetric Waves in a New Two-Mode Extension of the \((1+1)\)-Dimensional Chaffee-Infante Model Probability Density in Relativistic Quantum Mechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1