Rafał Wyczółkowski, Mariusz Salwin, Marek Gała, Dominika Strycharska, Tomasz Chmielewski
{"title":"Analysis of the influence of thermal contact conduction on the intensity of heat flow in a bundle of round steel bars","authors":"Rafał Wyczółkowski, Mariusz Salwin, Marek Gała, Dominika Strycharska, Tomasz Chmielewski","doi":"10.1007/s00161-025-01363-2","DOIUrl":null,"url":null,"abstract":"<div><p>The article analyzes the impact of contact conduction on the intensity of heat flow in a bundle of steel round bars. This issue is related to the optimization of the heat treatment of the bars, as contact conduction is a key mechanism in the heating process of the considered charge. A proprietary computational model, based on the analysis of thermal resistances, was used for the analysis. To quantify heat flow intensity in the bar bundle, the concept of effective thermal conductivity was utilized. The impact of contact conduction on the phenomenon under consideration was expressed using a parameter called the multiplication of effective thermal conductivity (<span>\\({M}_{ ETC})\\)</span>, defined by Eq. (36). Calculations were conducted across a temperature range of 25–800 °C, considering variables such as bar diameters (10, 20, and 30 mm), bundle porosity, and type of gas (air and hydrogen). Results indicate that temperature has the greatest influence on the course of the analyzed phenomenon, as this parameter increases, the influence of contact conduction decreases rapidly. Across the entire temperature range, contact conduction increases heat transfer intensity by approximately: four times (for air) and twice (for hydrogen).</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"37 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-025-01363-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The article analyzes the impact of contact conduction on the intensity of heat flow in a bundle of steel round bars. This issue is related to the optimization of the heat treatment of the bars, as contact conduction is a key mechanism in the heating process of the considered charge. A proprietary computational model, based on the analysis of thermal resistances, was used for the analysis. To quantify heat flow intensity in the bar bundle, the concept of effective thermal conductivity was utilized. The impact of contact conduction on the phenomenon under consideration was expressed using a parameter called the multiplication of effective thermal conductivity (\({M}_{ ETC})\), defined by Eq. (36). Calculations were conducted across a temperature range of 25–800 °C, considering variables such as bar diameters (10, 20, and 30 mm), bundle porosity, and type of gas (air and hydrogen). Results indicate that temperature has the greatest influence on the course of the analyzed phenomenon, as this parameter increases, the influence of contact conduction decreases rapidly. Across the entire temperature range, contact conduction increases heat transfer intensity by approximately: four times (for air) and twice (for hydrogen).
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.