Herbage biomass predictions from UAV data using a derived digital terrain model and machine learning

IF 2.7 3区 农林科学 Q1 AGRONOMY Grass and Forage Science Pub Date : 2024-09-23 DOI:10.1111/gfs.12694
Philippe Aebischer, Michael Sutter, Amy Birkinshaw, Madlene Nussbaum, Beat Reidy
{"title":"Herbage biomass predictions from UAV data using a derived digital terrain model and machine learning","authors":"Philippe Aebischer,&nbsp;Michael Sutter,&nbsp;Amy Birkinshaw,&nbsp;Madlene Nussbaum,&nbsp;Beat Reidy","doi":"10.1111/gfs.12694","DOIUrl":null,"url":null,"abstract":"<p>More than 70% of Switzerland's agricultural area is covered by grasslands that often exhibit highly diverse species compositions and heterogeneous growth patterns. An essential requirement for efficient and effective pasture management is the regular estimation of herbage biomass. While various methods exist for estimating herbage biomass, they are often time-consuming and may not accurately capture the variability within pastures. This highlights the need for more efficient, accurate estimation techniques. To help improve herbage biomass estimation, we present <i>estiGrass3D+</i>, a Random Forest model. This model predicts pasture biomass using a digital terrain model (DTM) derived from a digital surface model (DSM) for sward height modelling, along with vegetation indices and agronomic variables from UAV images only. The model was successfully evaluated with independent test data from different sites on the Swiss central plateau, including both grazed and mown areas. Model performance on an independent validation dataset achieved a NRMSE of 20.3%, while the training dataset had an NRMSE of 21.5%. These consistent results confirm that <i>estiGrass3D</i>+ is both transferable and applicable to unseen data while maintaining accuracy and reliability across different datasets. The wide applicability of our method demonstrates its practicality for predicting herbage biomass under different pasture management scenarios. Additionally, our method of deriving a DTM directly from a DSM simplifies the measurement of grass sward height by UAVs, eliminating the need for prior ground control point (GCP) marking and subsequent aligning, enhancing the efficiency of herbage biomass estimation.</p>","PeriodicalId":12767,"journal":{"name":"Grass and Forage Science","volume":"79 4","pages":"530-542"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gfs.12694","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grass and Forage Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gfs.12694","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

More than 70% of Switzerland's agricultural area is covered by grasslands that often exhibit highly diverse species compositions and heterogeneous growth patterns. An essential requirement for efficient and effective pasture management is the regular estimation of herbage biomass. While various methods exist for estimating herbage biomass, they are often time-consuming and may not accurately capture the variability within pastures. This highlights the need for more efficient, accurate estimation techniques. To help improve herbage biomass estimation, we present estiGrass3D+, a Random Forest model. This model predicts pasture biomass using a digital terrain model (DTM) derived from a digital surface model (DSM) for sward height modelling, along with vegetation indices and agronomic variables from UAV images only. The model was successfully evaluated with independent test data from different sites on the Swiss central plateau, including both grazed and mown areas. Model performance on an independent validation dataset achieved a NRMSE of 20.3%, while the training dataset had an NRMSE of 21.5%. These consistent results confirm that estiGrass3D+ is both transferable and applicable to unseen data while maintaining accuracy and reliability across different datasets. The wide applicability of our method demonstrates its practicality for predicting herbage biomass under different pasture management scenarios. Additionally, our method of deriving a DTM directly from a DSM simplifies the measurement of grass sward height by UAVs, eliminating the need for prior ground control point (GCP) marking and subsequent aligning, enhancing the efficiency of herbage biomass estimation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用衍生数字地形模型和机器学习从无人机数据中预测垃圾生物量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Grass and Forage Science
Grass and Forage Science 农林科学-农艺学
CiteScore
5.10
自引率
8.30%
发文量
37
审稿时长
12 months
期刊介绍: Grass and Forage Science is a major English language journal that publishes the results of research and development in all aspects of grass and forage production, management and utilization; reviews of the state of knowledge on relevant topics; and book reviews. Authors are also invited to submit papers on non-agricultural aspects of grassland management such as recreational and amenity use and the environmental implications of all grassland systems. The Journal considers papers from all climatic zones.
期刊最新文献
Issue Information Editorial Sward Species Diversity Impacts on Pasture Productivity and Botanical Composition Under Grazing Systems Survival of 13 Forage Legumes in Contrasting Environments of Central Otago, New Zealand Editorial: Special issue on green biorefining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1