Proteomic analysis reveals distinct cerebrospinal fluid signatures across genetic frontotemporal dementia subtypes

IF 15.8 1区 医学 Q1 CELL BIOLOGY Science Translational Medicine Pub Date : 2025-02-05
Aitana Sogorb-Esteve, Sophia Weiner, Joel Simrén, Imogen J. Swift, Martina Bocchetta, Emily G. Todd, David M. Cash, Arabella Bouzigues, Lucy L. Russell, Phoebe H. Foster, Eve Ferry-Bolder, John C. van Swieten, Lize C. Jiskoot, Harro Seelaar, Raquel Sanchez-Valle, Robert Laforce, Caroline Graff, Daniela Galimberti, Rik Vandenberghe, Alexandre de Mendonça, Pietro Tiraboschi, Isabel Santana, Alexander Gerhard, Johannes Levin, Sandro Sorbi, Markus Otto, Florence Pasquier, Simon Ducharme, Chris R. Butler, Isabelle Le Ber, Elizabeth Finger, Maria Carmela Tartaglia, Mario Masellis, James B. Rowe, Matthis Synofzik, Fermin Moreno, Barbara Borroni, GENFI, Kaj Blennow, Henrik Zetterberg, Jonathan D. Rohrer, Johan Gobom
{"title":"Proteomic analysis reveals distinct cerebrospinal fluid signatures across genetic frontotemporal dementia subtypes","authors":"Aitana Sogorb-Esteve,&nbsp;Sophia Weiner,&nbsp;Joel Simrén,&nbsp;Imogen J. Swift,&nbsp;Martina Bocchetta,&nbsp;Emily G. Todd,&nbsp;David M. Cash,&nbsp;Arabella Bouzigues,&nbsp;Lucy L. Russell,&nbsp;Phoebe H. Foster,&nbsp;Eve Ferry-Bolder,&nbsp;John C. van Swieten,&nbsp;Lize C. Jiskoot,&nbsp;Harro Seelaar,&nbsp;Raquel Sanchez-Valle,&nbsp;Robert Laforce,&nbsp;Caroline Graff,&nbsp;Daniela Galimberti,&nbsp;Rik Vandenberghe,&nbsp;Alexandre de Mendonça,&nbsp;Pietro Tiraboschi,&nbsp;Isabel Santana,&nbsp;Alexander Gerhard,&nbsp;Johannes Levin,&nbsp;Sandro Sorbi,&nbsp;Markus Otto,&nbsp;Florence Pasquier,&nbsp;Simon Ducharme,&nbsp;Chris R. Butler,&nbsp;Isabelle Le Ber,&nbsp;Elizabeth Finger,&nbsp;Maria Carmela Tartaglia,&nbsp;Mario Masellis,&nbsp;James B. Rowe,&nbsp;Matthis Synofzik,&nbsp;Fermin Moreno,&nbsp;Barbara Borroni,&nbsp;GENFI,&nbsp;Kaj Blennow,&nbsp;Henrik Zetterberg,&nbsp;Jonathan D. Rohrer,&nbsp;Johan Gobom","doi":"","DOIUrl":null,"url":null,"abstract":"<div >We used an untargeted mass spectrometric approach, tandem mass tag proteomics, for the identification of proteomic signatures in genetic frontotemporal dementia (FTD). A total of 238 cerebrospinal fluid (CSF) samples from the Genetic FTD Initiative were analyzed, including samples from 107 presymptomatic (44 <i>C9orf72</i>, 38 <i>GRN</i>, and 25 <i>MAPT</i>) and 55 symptomatic (27 <i>C9orf72</i>, 17 <i>GRN</i>, and 11 <i>MAPT</i>) mutation carriers as well as 76 mutation-negative controls (“noncarriers”). We found shared and distinct proteomic alterations in each genetic form of FTD. Among the proteins significantly altered in symptomatic mutation carriers compared with noncarriers, we found that a set of proteins including neuronal pentraxin 2 and fatty acid binding protein 3 changed across all three genetic forms of FTD and patients with Alzheimer’s disease from previously published datasets. We observed differential changes in lysosomal proteins among symptomatic mutation carriers with marked abundance decreases in <i>MAPT</i> carriers but not other carriers. Further, we identified mutation-associated proteomic changes already evident in presymptomatic mutation carriers. Weighted gene coexpression network analysis combined with gene ontology annotation revealed clusters of proteins enriched in neurodegeneration and glial responses as well as synapse- or lysosome-related proteins indicating that these are the central biological processes affected in genetic FTD. These clusters correlated with measures of disease severity and were associated with cognitive decline. This study revealed distinct proteomic changes in the CSF of patients with genetic FTD, providing insights into the pathological processes involved in the disease. In addition, we identified proteins that warrant further exploration as diagnostic and prognostic biomarker candidates.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"17 784","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scitranslmed.adm9654","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.adm9654","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We used an untargeted mass spectrometric approach, tandem mass tag proteomics, for the identification of proteomic signatures in genetic frontotemporal dementia (FTD). A total of 238 cerebrospinal fluid (CSF) samples from the Genetic FTD Initiative were analyzed, including samples from 107 presymptomatic (44 C9orf72, 38 GRN, and 25 MAPT) and 55 symptomatic (27 C9orf72, 17 GRN, and 11 MAPT) mutation carriers as well as 76 mutation-negative controls (“noncarriers”). We found shared and distinct proteomic alterations in each genetic form of FTD. Among the proteins significantly altered in symptomatic mutation carriers compared with noncarriers, we found that a set of proteins including neuronal pentraxin 2 and fatty acid binding protein 3 changed across all three genetic forms of FTD and patients with Alzheimer’s disease from previously published datasets. We observed differential changes in lysosomal proteins among symptomatic mutation carriers with marked abundance decreases in MAPT carriers but not other carriers. Further, we identified mutation-associated proteomic changes already evident in presymptomatic mutation carriers. Weighted gene coexpression network analysis combined with gene ontology annotation revealed clusters of proteins enriched in neurodegeneration and glial responses as well as synapse- or lysosome-related proteins indicating that these are the central biological processes affected in genetic FTD. These clusters correlated with measures of disease severity and were associated with cognitive decline. This study revealed distinct proteomic changes in the CSF of patients with genetic FTD, providing insights into the pathological processes involved in the disease. In addition, we identified proteins that warrant further exploration as diagnostic and prognostic biomarker candidates.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质组分析揭示了不同遗传性额颞叶痴呆亚型的脑脊液特征
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Translational Medicine
Science Translational Medicine CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
26.70
自引率
1.20%
发文量
309
审稿时长
1.7 months
期刊介绍: Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research. The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases. The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine. The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.
期刊最新文献
Broadly neutralizing antibodies targeting pandemic GII.4 variants or seven GII genotypes of human norovirus Bispecific antibodies targeting the N-terminal and receptor binding domains potently neutralize SARS-CoV-2 variants of concern Clinical relevance of engineered cartilage maturation in a randomized multicenter trial for articular cartilage repair An oral norovirus vaccine tablet was safe and elicited mucosal immunity in older adults in a phase 1b clinical trial A single-cell atlas of circulating immune cells over the first 2 months of age in extremely premature infants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1