Near-Infrared-II Fluorescent Probes for Analytical Applications: From In Vitro Detection to In Vivo Imaging Monitoring.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2025-02-05 DOI:10.1021/acs.accounts.4c00671
Sha Liu, Wenhong Dong, Hui-Quan Gao, Zhaorui Song, Zhen Cheng
{"title":"Near-Infrared-II Fluorescent Probes for Analytical Applications: From <i>In Vitro</i> Detection to <i>In Vivo</i> Imaging Monitoring.","authors":"Sha Liu, Wenhong Dong, Hui-Quan Gao, Zhaorui Song, Zhen Cheng","doi":"10.1021/acs.accounts.4c00671","DOIUrl":null,"url":null,"abstract":"<p><p>ConspectusBiomarkers play a vital role in the regulation of life processes, especially in predicting the occurrence and development of diseases. For the early diagnosis and precise treatment of diseases, it has become necessary and significant to detect biomarkers with sensitivity, accuracy, simplicity, convenience, and even visualization. Fluorescent-probe-based techniques have been recognized as one of the most powerful tools for the sensitive detection and real time imaging of biomarkers in biological samples. However, traditional optical probes, mainly including the visible probes (400-700 nm) and the near-infrared I (NIR-I, 700-900 nm) probes, suffer from low sensitivity, poor resolution, strong absorption and scattering, and high background fluorescence, which hinder effective monitoring of biomarkers.Fortunately, the past decade has witnessed a remarkable evolution in the application fields of near-infrared II (NIR-II, 900-1700 nm) fluorescence, driven by its exceptional optical characteristics and the advancement of imaging technologies. Leveraging the superior penetration capabilities, negligible autofluorescence, and extended fluorescence emission wavelengths, NIR-II fluorescent probes significantly enhance the signal-to-noise ratio (SNR) of <i>in vitro</i> detection (IVD) and the temporal resolution of <i>in vivo</i> imaging. Our team has been committed to the design strategy, controlled synthesis, luminous mechanisms, and biomedical applications of NIR-II fluorescent probes. In this Account, we present the representative works in recent years from our group in the field of NIR-II fluorescent probes for analytical applications, ranging from <i>in vitro</i> detection of biomarkers to <i>in vivo</i> imaging monitoring of different biomarkers and various diseases, which also will further provide a general overview of analytical applications of NIR-II fluorescence probes. First, the <i>in vitro</i> analytical applications of NIR-II fluorescent probes are fully summarized, including tumor marker detection, virus and bacteria analysis, cell testing, and small-molecule sensing. Second, the <i>in vivo</i> imaging monitoring applications of NIR-II fluorescent probes are adequately discussed, including ROS detection, gas monitoring, pH sensing, small-molecule testing, receptor analysis, and the imaging diagnosis of some serious diseases. Finally, we further outline the application advantages of NIR-II fluorescent probes in analytical fields and also discuss in detail some challenges as well as their future development. There is a reasonable prospect that the <i>in vitro</i> detection technology and the <i>in vivo</i> imaging monitoring technology based on NIR-II fluorescent probes will exhibit great development potential in biomedical research and clinical disease diagnosis. We hope that this Account can expand their reach into an even broader spectrum of fields, further enhancing their impact on scientific discovery and medical practice.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.4c00671","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ConspectusBiomarkers play a vital role in the regulation of life processes, especially in predicting the occurrence and development of diseases. For the early diagnosis and precise treatment of diseases, it has become necessary and significant to detect biomarkers with sensitivity, accuracy, simplicity, convenience, and even visualization. Fluorescent-probe-based techniques have been recognized as one of the most powerful tools for the sensitive detection and real time imaging of biomarkers in biological samples. However, traditional optical probes, mainly including the visible probes (400-700 nm) and the near-infrared I (NIR-I, 700-900 nm) probes, suffer from low sensitivity, poor resolution, strong absorption and scattering, and high background fluorescence, which hinder effective monitoring of biomarkers.Fortunately, the past decade has witnessed a remarkable evolution in the application fields of near-infrared II (NIR-II, 900-1700 nm) fluorescence, driven by its exceptional optical characteristics and the advancement of imaging technologies. Leveraging the superior penetration capabilities, negligible autofluorescence, and extended fluorescence emission wavelengths, NIR-II fluorescent probes significantly enhance the signal-to-noise ratio (SNR) of in vitro detection (IVD) and the temporal resolution of in vivo imaging. Our team has been committed to the design strategy, controlled synthesis, luminous mechanisms, and biomedical applications of NIR-II fluorescent probes. In this Account, we present the representative works in recent years from our group in the field of NIR-II fluorescent probes for analytical applications, ranging from in vitro detection of biomarkers to in vivo imaging monitoring of different biomarkers and various diseases, which also will further provide a general overview of analytical applications of NIR-II fluorescence probes. First, the in vitro analytical applications of NIR-II fluorescent probes are fully summarized, including tumor marker detection, virus and bacteria analysis, cell testing, and small-molecule sensing. Second, the in vivo imaging monitoring applications of NIR-II fluorescent probes are adequately discussed, including ROS detection, gas monitoring, pH sensing, small-molecule testing, receptor analysis, and the imaging diagnosis of some serious diseases. Finally, we further outline the application advantages of NIR-II fluorescent probes in analytical fields and also discuss in detail some challenges as well as their future development. There is a reasonable prospect that the in vitro detection technology and the in vivo imaging monitoring technology based on NIR-II fluorescent probes will exhibit great development potential in biomedical research and clinical disease diagnosis. We hope that this Account can expand their reach into an even broader spectrum of fields, further enhancing their impact on scientific discovery and medical practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Parenting Attitudes and Abusive Parenting among Incarcerated Mothers in Japan. Power and Intimacy Motives in Narratives About Closeness Presented by People Staying in a Penitentiary Institution. Biological Polymers: Evolution, Function, and Significance. Catalytic Hydrogenolysis of Lignin into Serviceable Products. Near-Infrared-II Fluorescent Probes for Analytical Applications: From In Vitro Detection to In Vivo Imaging Monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1