Inflammation induced PFKFB3-mediated glycolysis promoting myometrium contraction through the PI3K-Akt-mTOR pathway in preterm birth mice.

IF 5 2区 生物学 Q2 CELL BIOLOGY American journal of physiology. Cell physiology Pub Date : 2025-02-05 DOI:10.1152/ajpcell.00704.2024
Jing He, Xuan Li, Huihui Yu, Chenyi Xu, Ruixian Tian, Ping Zhou, Zongzhi Yin
{"title":"Inflammation induced PFKFB3-mediated glycolysis promoting myometrium contraction through the PI3K-Akt-mTOR pathway in preterm birth mice.","authors":"Jing He, Xuan Li, Huihui Yu, Chenyi Xu, Ruixian Tian, Ping Zhou, Zongzhi Yin","doi":"10.1152/ajpcell.00704.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation is a significant risk factor for preterm birth. Inflammation enhances glycolytic processes in various cell types and contributes to the development of myometrial contractions. However, the potential of inflammation to activate glycolysis in pregnant murine uterine smooth muscle cells (mUSMCs) and its role in promoting inflammatory preterm birth remain unexplored. In this study, lipopolysaccharide was employed to establish both cell and animal inflammation models. We found that inflammation of mUSMCs during late pregnancy could initiate glycolysis and promoted cell contraction. Subsequently, the inhibition of glycolysis using the glycolysis inhibitor 2-deoxyglucose can reverse inflammation-induced cell contraction. The expression of 6-phosphofructokinase 2 kinase (PFKFB3) was significantly upregulated in mUSMCs following lipopolysaccharide stimulation. Additionally, lactate accumulation and enhanced contraction were observed. Inhibition of PFKFB3 reversed the lactate accumulation and enhanced contraction induced by inflammation. We also found that inflammation activated the phosphatidylinositol 3-kinase (PI3K) - protein kinase B (Akt) - mammalian target of rapamycin (mTOR) pathway, leading to the upregulation of PFKFB3 expression. The PI3K-Akt pathway inhibitor LY294002 and the mTOR pathway inhibitor Rapamycin effectively inhibited the upregulation of PFKFB3 protein expression, lactate production, and the enhancement of cell contraction induced by lipopolysaccharide. This study indicates that inflammation regulates PFKFB3 through the PI3K-Akt-mTOR pathway, which enhances the glycolytic process in pregnant mUSMCs, ultimately leading to myometrial contraction.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00704.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Inflammation is a significant risk factor for preterm birth. Inflammation enhances glycolytic processes in various cell types and contributes to the development of myometrial contractions. However, the potential of inflammation to activate glycolysis in pregnant murine uterine smooth muscle cells (mUSMCs) and its role in promoting inflammatory preterm birth remain unexplored. In this study, lipopolysaccharide was employed to establish both cell and animal inflammation models. We found that inflammation of mUSMCs during late pregnancy could initiate glycolysis and promoted cell contraction. Subsequently, the inhibition of glycolysis using the glycolysis inhibitor 2-deoxyglucose can reverse inflammation-induced cell contraction. The expression of 6-phosphofructokinase 2 kinase (PFKFB3) was significantly upregulated in mUSMCs following lipopolysaccharide stimulation. Additionally, lactate accumulation and enhanced contraction were observed. Inhibition of PFKFB3 reversed the lactate accumulation and enhanced contraction induced by inflammation. We also found that inflammation activated the phosphatidylinositol 3-kinase (PI3K) - protein kinase B (Akt) - mammalian target of rapamycin (mTOR) pathway, leading to the upregulation of PFKFB3 expression. The PI3K-Akt pathway inhibitor LY294002 and the mTOR pathway inhibitor Rapamycin effectively inhibited the upregulation of PFKFB3 protein expression, lactate production, and the enhancement of cell contraction induced by lipopolysaccharide. This study indicates that inflammation regulates PFKFB3 through the PI3K-Akt-mTOR pathway, which enhances the glycolytic process in pregnant mUSMCs, ultimately leading to myometrial contraction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
期刊最新文献
An Endogenous Aryl Hydrocarbon Receptor Ligand Dysregulates Endothelial Functions, Transcriptome, and Phosphoproteome. Effects of oral γ-aminobutyric acid intake on muscle regeneration in diabetic mice. Inflammation induced PFKFB3-mediated glycolysis promoting myometrium contraction through the PI3K-Akt-mTOR pathway in preterm birth mice. Cellular mechanisms underlying overreaching in skeletal muscle following excessive high-intensity interval training. Histone lactylation-mediated overexpression of RASD2 promotes endometriosis progression via upregulating the SUMOylation of CTPS1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1