Hashim Kareemi, Krishan Yadav, Courtney Price, Niklas Bobrovitz, Andrew Meehan, Henry Li, Gautam Goel, Sameer Masood, Lars Grant, Maxim Ben-Yakov, Wojtek Michalowski, Christian Vaillancourt
{"title":"Artificial intelligence-based clinical decision support in the emergency department: A scoping review.","authors":"Hashim Kareemi, Krishan Yadav, Courtney Price, Niklas Bobrovitz, Andrew Meehan, Henry Li, Gautam Goel, Sameer Masood, Lars Grant, Maxim Ben-Yakov, Wojtek Michalowski, Christian Vaillancourt","doi":"10.1111/acem.15099","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Artificial intelligence (AI)-based clinical decision support (CDS) has the potential to augment high-stakes clinical decisions in the emergency department (ED). However, its current usage and translation to implementation remains poorly understood. We asked: (1) What is the current landscape of AI-CDS for individual patient care in the ED? and (2) What phases of development have AI-CDS tools achieved?</p><p><strong>Methods: </strong>We performed a scoping review of AI for prognostic, diagnostic, and treatment decisions regarding individual ED patient care. We searched five databases (MEDLINE, EMBASE, Cochrane Central, Scopus, Web of Science) and gray literature sources from January 1, 2010, to December 11, 2023. We adhered to guidelines from the Joanna Briggs Institute and PRISMA Extension for Scoping Reviews. We published our protocol on Open Science Framework (DOI 10.17605/OSF.IO/FDZ3Y).</p><p><strong>Results: </strong>Of 5168 unique records identified, we selected 605 studies for inclusion. The majority (369, 61%) were published in 2021-2023. The studies ranged over a variety of clinical applications, patient populations, and AI model types. Prognostic outcomes were most commonly assessed (270, 44.6%), followed by diagnostic (193, 31.9%) and disposition (115, 19%). Most studies remained in the earliest phase of preclinical development (572, 94.5%) with few advancing to later phases (33, 5.5%).</p><p><strong>Conclusions: </strong>By thoroughly mapping the landscape of AI-CDS in the ED, we demonstrate a rapidly increasing volume of studies covering a breadth of clinical applications, yet few have achieved advanced phases of testing or implementation. A more granular understanding of the barriers and facilitators to implementing AI-CDS in the ED is needed.</p>","PeriodicalId":7105,"journal":{"name":"Academic Emergency Medicine","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Emergency Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/acem.15099","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EMERGENCY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Artificial intelligence (AI)-based clinical decision support (CDS) has the potential to augment high-stakes clinical decisions in the emergency department (ED). However, its current usage and translation to implementation remains poorly understood. We asked: (1) What is the current landscape of AI-CDS for individual patient care in the ED? and (2) What phases of development have AI-CDS tools achieved?
Methods: We performed a scoping review of AI for prognostic, diagnostic, and treatment decisions regarding individual ED patient care. We searched five databases (MEDLINE, EMBASE, Cochrane Central, Scopus, Web of Science) and gray literature sources from January 1, 2010, to December 11, 2023. We adhered to guidelines from the Joanna Briggs Institute and PRISMA Extension for Scoping Reviews. We published our protocol on Open Science Framework (DOI 10.17605/OSF.IO/FDZ3Y).
Results: Of 5168 unique records identified, we selected 605 studies for inclusion. The majority (369, 61%) were published in 2021-2023. The studies ranged over a variety of clinical applications, patient populations, and AI model types. Prognostic outcomes were most commonly assessed (270, 44.6%), followed by diagnostic (193, 31.9%) and disposition (115, 19%). Most studies remained in the earliest phase of preclinical development (572, 94.5%) with few advancing to later phases (33, 5.5%).
Conclusions: By thoroughly mapping the landscape of AI-CDS in the ED, we demonstrate a rapidly increasing volume of studies covering a breadth of clinical applications, yet few have achieved advanced phases of testing or implementation. A more granular understanding of the barriers and facilitators to implementing AI-CDS in the ED is needed.
期刊介绍:
Academic Emergency Medicine (AEM) is the official monthly publication of the Society for Academic Emergency Medicine (SAEM) and publishes information relevant to the practice, educational advancements, and investigation of emergency medicine. It is the second-largest peer-reviewed scientific journal in the specialty of emergency medicine.
The goal of AEM is to advance the science, education, and clinical practice of emergency medicine, to serve as a voice for the academic emergency medicine community, and to promote SAEM''s goals and objectives. Members and non-members worldwide depend on this journal for translational medicine relevant to emergency medicine, as well as for clinical news, case studies and more.
Each issue contains information relevant to the research, educational advancements, and practice in emergency medicine. Subject matter is diverse, including preclinical studies, clinical topics, health policy, and educational methods. The research of SAEM members contributes significantly to the scientific content and development of the journal.