Repeated intermittent administration of 3,4-methylenedioxymethamphetamine mitigates demyelination in the brain from cuprizone-treated mice

IF 4.2 3区 医学 Q1 PHARMACOLOGY & PHARMACY European journal of pharmacology Pub Date : 2025-02-02 DOI:10.1016/j.ejphar.2025.177345
Mingming Zhao , Akifumi Eguchi , Rumi Murayama , Dan Xu , Tingting Zhu , Biao Xu , Guiling Liu , Chisato Mori , Jianjun Yang , Kenji Hashimoto
{"title":"Repeated intermittent administration of 3,4-methylenedioxymethamphetamine mitigates demyelination in the brain from cuprizone-treated mice","authors":"Mingming Zhao ,&nbsp;Akifumi Eguchi ,&nbsp;Rumi Murayama ,&nbsp;Dan Xu ,&nbsp;Tingting Zhu ,&nbsp;Biao Xu ,&nbsp;Guiling Liu ,&nbsp;Chisato Mori ,&nbsp;Jianjun Yang ,&nbsp;Kenji Hashimoto","doi":"10.1016/j.ejphar.2025.177345","DOIUrl":null,"url":null,"abstract":"<div><div>3,4-Methylenedioxymethamphetamine (MDMA), commonly known as a recreational drug, may also offer therapeutic benefits for mental health. Population-based studies suggest that MDMA users have a lower risk of demyelinating diseases, such as depression. Given the role of the gut microbiota in mediating MDMA's effects, we hypothesized that MDMA might confer mental health benefits via the gut-brain axis. Cuprizone (CPZ) induces demyelination by chelating copper, which leads to oligodendrocyte death and subsequent myelin loss. This study investigated the impact of MDMA on brain demyelination in CPZ-treated mice, focusing on the gut-brain axis. Repeated intermittent MDMA administration (10 mg/kg, three times weekly for 6 weeks) significantly reduced demyelination in the corpus callosum (CC) of CPZ-treated mice. Gut microbiota and non-targeted metabolomics analyses revealed notable differences in specific gut bacteria and plasma (β-D-allose and L-sorbose) or fecal metabolite (carnitine) levels between MDMA-treated and vehicle-treated CPZ-exposed mice. Negative correlations were found between the levels of metabolites (β-D-allose, L-sorbose, and carnitine) and the relative abundance of <em>Romboutsia</em> and <em>Romboutsia timonensis</em>. These findings suggest that intermittent MDMA administration may alleviate demyelination in the CC of CPZ-treated mice via the gut–brain axis. Further research is needed to elucidate the roles of gut microbiota and metabolites in MDMA's effects on brain demyelination and to investigate other demyelination models.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"991 ","pages":"Article 177345"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299925000986","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

3,4-Methylenedioxymethamphetamine (MDMA), commonly known as a recreational drug, may also offer therapeutic benefits for mental health. Population-based studies suggest that MDMA users have a lower risk of demyelinating diseases, such as depression. Given the role of the gut microbiota in mediating MDMA's effects, we hypothesized that MDMA might confer mental health benefits via the gut-brain axis. Cuprizone (CPZ) induces demyelination by chelating copper, which leads to oligodendrocyte death and subsequent myelin loss. This study investigated the impact of MDMA on brain demyelination in CPZ-treated mice, focusing on the gut-brain axis. Repeated intermittent MDMA administration (10 mg/kg, three times weekly for 6 weeks) significantly reduced demyelination in the corpus callosum (CC) of CPZ-treated mice. Gut microbiota and non-targeted metabolomics analyses revealed notable differences in specific gut bacteria and plasma (β-D-allose and L-sorbose) or fecal metabolite (carnitine) levels between MDMA-treated and vehicle-treated CPZ-exposed mice. Negative correlations were found between the levels of metabolites (β-D-allose, L-sorbose, and carnitine) and the relative abundance of Romboutsia and Romboutsia timonensis. These findings suggest that intermittent MDMA administration may alleviate demyelination in the CC of CPZ-treated mice via the gut–brain axis. Further research is needed to elucidate the roles of gut microbiota and metabolites in MDMA's effects on brain demyelination and to investigate other demyelination models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.00
自引率
0.00%
发文量
572
审稿时长
34 days
期刊介绍: The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems. The scope includes: Behavioural pharmacology Neuropharmacology and analgesia Cardiovascular pharmacology Pulmonary, gastrointestinal and urogenital pharmacology Endocrine pharmacology Immunopharmacology and inflammation Molecular and cellular pharmacology Regenerative pharmacology Biologicals and biotherapeutics Translational pharmacology Nutriceutical pharmacology.
期刊最新文献
Disulfiram alleviates immune-mediated liver injury by inhibiting pyroptosis in hepatocytes through the NF-κB pathway Hydrogen-rich water ameliorates imiquimod-induced psoriasis-like skin lesions and regulates macrophage polarization in dyslipidemic ApoE-deficient mice. Agmatine Mitigates Hyperexcitability of Ventral Tegmental Area Dopaminergic Neurons in Prenatally Stressed Male Offspring. Hepatokines and Their Role in Cardiohepatic Interactions in Heart Failure. The Potential Role of PD-1/PD-L1 Small Molecule Inhibitors in Colorectal Cancer with Different Mechanisms of Action.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1