YTHDF1 and YTHDC1 m6A reader proteins regulate HTLV-1 tax and hbz activity.

IF 4 2区 医学 Q2 VIROLOGY Journal of Virology Pub Date : 2025-03-18 Epub Date: 2025-02-04 DOI:10.1128/jvi.02063-24
Emily M King, Amanda Midkiff, Karsyn McClain, Sanggu Kim, Amanda R Panfil
{"title":"YTHDF1 and YTHDC1 m<sup>6</sup>A reader proteins regulate HTLV-1 <i>tax</i> and <i>hbz</i> activity.","authors":"Emily M King, Amanda Midkiff, Karsyn McClain, Sanggu Kim, Amanda R Panfil","doi":"10.1128/jvi.02063-24","DOIUrl":null,"url":null,"abstract":"<p><p>Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus responsible for adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a progressive neurodegenerative disease. Regulation of viral gene expression plays a key role in viral persistence and pathogenesis. However, the molecular mechanisms underlying this fine-tuned regulation remain poorly understood. Little is known regarding RNA chemical modifications of HTLV-1 RNA and how these affect viral biology and disease development. Post-transcriptional chemical modification of RNA is common in eukaryotes, with N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) being the most prevalent. In this study, we investigated the role of m<sup>6</sup>A RNA modifications on HTLV-1 gene expression. Using MeRIP-Seq, we mapped the sites of m<sup>6</sup>A modification to the 3' end of the viral genome. We found HTLV-1 RNA, as well as viral oncogene transcripts <i>tax</i> and <i>hbz</i>, contained m<sup>6</sup>A modifications. m<sup>6</sup>A-depletion in HTLV-1-transformed cells decreased sense-derived viral genes (<i>Tax, Gag,</i> and <i>Env</i>) and increased antisense-derived <i>Hbz</i> expression. <i>Tax</i> and <i>hbz</i> transcripts were bound by reader proteins YTHDF1 and YTHDC1 in a panel of HTLV-1 T-cell lines. Using expression vectors and shRNA-mediated knockdown, we found that YTHDF1 had opposing effects on viral gene expression, decreasing sense-derived viral genes and increasing antisense-derived <i>Hbz</i>. Upon further study, the YTHDF1 effects on <i>tax</i> abundance were dependent on <i>tax</i> m<sup>6</sup>A deposition. The nuclear m<sup>6</sup>A reader protein YTHDC1 affected the abundance of both sense- and antisense-derived viral transcripts and specifically enhanced the nuclear export of <i>tax</i> transcript. Collectively, our results demonstrate global m<sup>6</sup>A levels and m<sup>6</sup>A reader proteins YTHDF1 and YTHDC1 regulate HTLV-1 gene expression.IMPORTANCEHuman T-cell leukemia virus type 1 (HTLV-1) persistence and pathogenesis are controlled through tight regulation of viral gene expression. The fate of RNA can be controlled by epigenetic modifications that impact gene expression without altering the DNA sequence. Our study details the impact of N6-methyladenosine (m<sup>6</sup>A) RNA chemical modifications on HTLV-1 gene expression. We found that reductions in global m<sup>6</sup>A levels affected viral gene expression, decreasing <i>Tax</i> and other sense-derived viral genes, whereas increasing the antisense-derived <i>Hbz</i>. Our results suggest the oncogenic viral transcripts, <i>tax</i> and <i>hbz</i>, are m<sup>6</sup>A-modified in cells. We found that these viral RNA modifications are interpreted by reader proteins YTHDF1 and YTHDC1, which dictate the fate of the viral RNA. Understanding HTLV-1 RNA chemical modifications offers potential insights into novel therapeutic strategies for HTLV-1-associated diseases.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0206324"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915865/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.02063-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus responsible for adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a progressive neurodegenerative disease. Regulation of viral gene expression plays a key role in viral persistence and pathogenesis. However, the molecular mechanisms underlying this fine-tuned regulation remain poorly understood. Little is known regarding RNA chemical modifications of HTLV-1 RNA and how these affect viral biology and disease development. Post-transcriptional chemical modification of RNA is common in eukaryotes, with N6-methyladenosine (m6A) being the most prevalent. In this study, we investigated the role of m6A RNA modifications on HTLV-1 gene expression. Using MeRIP-Seq, we mapped the sites of m6A modification to the 3' end of the viral genome. We found HTLV-1 RNA, as well as viral oncogene transcripts tax and hbz, contained m6A modifications. m6A-depletion in HTLV-1-transformed cells decreased sense-derived viral genes (Tax, Gag, and Env) and increased antisense-derived Hbz expression. Tax and hbz transcripts were bound by reader proteins YTHDF1 and YTHDC1 in a panel of HTLV-1 T-cell lines. Using expression vectors and shRNA-mediated knockdown, we found that YTHDF1 had opposing effects on viral gene expression, decreasing sense-derived viral genes and increasing antisense-derived Hbz. Upon further study, the YTHDF1 effects on tax abundance were dependent on tax m6A deposition. The nuclear m6A reader protein YTHDC1 affected the abundance of both sense- and antisense-derived viral transcripts and specifically enhanced the nuclear export of tax transcript. Collectively, our results demonstrate global m6A levels and m6A reader proteins YTHDF1 and YTHDC1 regulate HTLV-1 gene expression.IMPORTANCEHuman T-cell leukemia virus type 1 (HTLV-1) persistence and pathogenesis are controlled through tight regulation of viral gene expression. The fate of RNA can be controlled by epigenetic modifications that impact gene expression without altering the DNA sequence. Our study details the impact of N6-methyladenosine (m6A) RNA chemical modifications on HTLV-1 gene expression. We found that reductions in global m6A levels affected viral gene expression, decreasing Tax and other sense-derived viral genes, whereas increasing the antisense-derived Hbz. Our results suggest the oncogenic viral transcripts, tax and hbz, are m6A-modified in cells. We found that these viral RNA modifications are interpreted by reader proteins YTHDF1 and YTHDC1, which dictate the fate of the viral RNA. Understanding HTLV-1 RNA chemical modifications offers potential insights into novel therapeutic strategies for HTLV-1-associated diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Public Value Management
IF 0 The American Review of Public AdministrationPub Date : 2006-03-01 DOI: 10.1177/0275074005282583
G. Stoker
Rethinking Value‐Based Management
IF 0 Handbook of Business StrategyPub Date : 1900-01-01 DOI: 10.1108/EB060282
E. Olsen
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
期刊最新文献
Sphingosine-1-phosphate signaling mediates shedding of measles virus-infected respiratory epithelial cells. Human alpha-herpesvirus 1 (HSV-1) viral replication and reactivation from latency are expedited by the glucocorticoid receptor. A gp41 HR2 residue modulates the susceptibility of HIV-1 envelope glycoproteins to small molecule inhibitors targeting gp120. Deep mutationally scanned CHIKV E3/E2 virus library maps viral amino acid preferences and predicts viral escape mutants of neutralizing CHIKV antibodies. Highly pathogenic avian influenza H5N1: history, current situation, and outlook.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1