Ashley M Rasys, Shana H Pau, Katherine E Irwin, Sherry Luo, Douglas B Menke, James D Lauderdale
{"title":"Histological analysis of anterior eye development in the brown anole lizard (Anolis sagrei).","authors":"Ashley M Rasys, Shana H Pau, Katherine E Irwin, Sherry Luo, Douglas B Menke, James D Lauderdale","doi":"10.1111/joa.14226","DOIUrl":null,"url":null,"abstract":"<p><p>For all vertebrates, the anterior eye structures work together to protect and nourish the eye while ensuring that light entering the eye is correctly focused on the retina. However, the anterior eye structure can vary significantly among different vertebrates, reflecting how the structures of the anterior eye have evolved to meet the specific visual needs of different vertebrate species. Although conserved pathways regulate fundamental aspects of anterior eye development in vertebrates, there may also be species-specific differences underlying structural variation. Our knowledge of the cellular and molecular mechanisms underlying the development of structures of the anterior eye comes mainly from work in mammals, chicks, some amphibians, and small teleosts such as zebrafish. Our understanding of anterior eye development would benefit from comparative molecular studies in diverse vertebrates. A promising lizard model is the brown anole, Anolis sagrei, which is easily raised in the laboratory and for which genome editing techniques exist. Here, we provide a detailed histological analysis of the development of the anterior structures of the eye in A. sagrei, which include the cornea, iris, ciliary body, lens, trabecular meshwork, and scleral ossicles. The development of the anterior segment in anoles follows a pattern similar to other vertebrates. The lens forms first, followed by the cornea, iris, ciliary body, and tissues involved in the outflow of the aqueous humor. The development of the iris and ciliary body begins temporally and then proceeds nasally. Scleral ossicle development is generally comparable to that reported for chicks and turtles. Anoles have a remarkably thin cornea and a flat ciliary body compared to the eyes of mammals and birds. This study highlights several features in anoles and represents a deeper understanding of reptile eye development.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14226","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
For all vertebrates, the anterior eye structures work together to protect and nourish the eye while ensuring that light entering the eye is correctly focused on the retina. However, the anterior eye structure can vary significantly among different vertebrates, reflecting how the structures of the anterior eye have evolved to meet the specific visual needs of different vertebrate species. Although conserved pathways regulate fundamental aspects of anterior eye development in vertebrates, there may also be species-specific differences underlying structural variation. Our knowledge of the cellular and molecular mechanisms underlying the development of structures of the anterior eye comes mainly from work in mammals, chicks, some amphibians, and small teleosts such as zebrafish. Our understanding of anterior eye development would benefit from comparative molecular studies in diverse vertebrates. A promising lizard model is the brown anole, Anolis sagrei, which is easily raised in the laboratory and for which genome editing techniques exist. Here, we provide a detailed histological analysis of the development of the anterior structures of the eye in A. sagrei, which include the cornea, iris, ciliary body, lens, trabecular meshwork, and scleral ossicles. The development of the anterior segment in anoles follows a pattern similar to other vertebrates. The lens forms first, followed by the cornea, iris, ciliary body, and tissues involved in the outflow of the aqueous humor. The development of the iris and ciliary body begins temporally and then proceeds nasally. Scleral ossicle development is generally comparable to that reported for chicks and turtles. Anoles have a remarkably thin cornea and a flat ciliary body compared to the eyes of mammals and birds. This study highlights several features in anoles and represents a deeper understanding of reptile eye development.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.