Possible new mechanisms of primary drug resistance in NSCLC with EGFR mutation treated with Osimertinib

IF 3.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY IUBMB Life Pub Date : 2025-02-05 DOI:10.1002/iub.70002
Lujing Shao, Tong Li, Xinyan Jia, Xinyu Zhang, Qi Li, Chunyan Dong
{"title":"Possible new mechanisms of primary drug resistance in NSCLC with EGFR mutation treated with Osimertinib","authors":"Lujing Shao,&nbsp;Tong Li,&nbsp;Xinyan Jia,&nbsp;Xinyu Zhang,&nbsp;Qi Li,&nbsp;Chunyan Dong","doi":"10.1002/iub.70002","DOIUrl":null,"url":null,"abstract":"<p>In this study, a patient with lung adenocarcinoma harboring an EGFR mutation exhibited primary resistance to the targeted EGFR inhibitor Osimertinib after 2 months of treatment. As the disease advanced, further genetic analysis revealed the emergence of additional mutations in ARID1A, NTRK1, and ZRSR2, alongside the existing EGFR mutation. Subsequent treatment with Pemetrexed resulted in a significant reduction in liver metastases. Protein mass spectrometry sequencing and immunohistochemical analysis collectively indicated that the PI3K/mTOR pathway mediates the mechanism through which these gene mutations confer primary drug resistance. Evidence demonstrates that the co-occurrence of EGFR and ARID1A mutations diminishes the efficacy of EGFR tyrosine kinase inhibitors (EGFR TKIs). Consequently, it is hypothesized that mutations in NTRK1 and ZRSR2, which are implicated in the PI3K/mTOR pathway, contribute to the primary resistance observed with Osimertinib treatment. In this case, the illness was effectively managed through prompt adjustments to the treatment regimen and the rapid administration of chemotherapy drugs. This finding also constitutes the first evidence that mutations in NTRK1 and ZRSR2 are pivotal in the development of primary resistance to Osimertinib. Consequently, it is imperative to conduct genetic testing at the earliest opportunity and modify the treatment plan accordingly.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"77 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/iub.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUBMB Life","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/iub.70002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a patient with lung adenocarcinoma harboring an EGFR mutation exhibited primary resistance to the targeted EGFR inhibitor Osimertinib after 2 months of treatment. As the disease advanced, further genetic analysis revealed the emergence of additional mutations in ARID1A, NTRK1, and ZRSR2, alongside the existing EGFR mutation. Subsequent treatment with Pemetrexed resulted in a significant reduction in liver metastases. Protein mass spectrometry sequencing and immunohistochemical analysis collectively indicated that the PI3K/mTOR pathway mediates the mechanism through which these gene mutations confer primary drug resistance. Evidence demonstrates that the co-occurrence of EGFR and ARID1A mutations diminishes the efficacy of EGFR tyrosine kinase inhibitors (EGFR TKIs). Consequently, it is hypothesized that mutations in NTRK1 and ZRSR2, which are implicated in the PI3K/mTOR pathway, contribute to the primary resistance observed with Osimertinib treatment. In this case, the illness was effectively managed through prompt adjustments to the treatment regimen and the rapid administration of chemotherapy drugs. This finding also constitutes the first evidence that mutations in NTRK1 and ZRSR2 are pivotal in the development of primary resistance to Osimertinib. Consequently, it is imperative to conduct genetic testing at the earliest opportunity and modify the treatment plan accordingly.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IUBMB Life
IUBMB Life 生物-生化与分子生物学
CiteScore
10.60
自引率
0.00%
发文量
109
审稿时长
4-8 weeks
期刊介绍: IUBMB Life is the flagship journal of the International Union of Biochemistry and Molecular Biology and is devoted to the rapid publication of the most novel and significant original research articles, reviews, and hypotheses in the broadly defined fields of biochemistry, molecular biology, cell biology, and molecular medicine.
期刊最新文献
Upstream transcription factor 1 suppresses laryngeal squamous cell carcinoma progression through transcriptional activation of junctional adhesion molecule 3 The cGAS-STING-related signature affects the prognosis of colorectal cancer through its regulation of multiple immune cells Issue Information Histone demethylase LSD1 promotes castration-resistant prostate cancer by causing widespread gene expression derangements Purification and validation of asparaginyl-tRNA synthetase heterodimer with indistinguishable subunits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1