High-Intensity Interval Training Increases Osteoarthritis-Associated Pain-Sensitive Threshold Through Reduction of Perineuronal Nets of the Medial Prefrontal Cortex in Rats.
X Zhang, F E Kong, C-S Lin, Z-Q Ye, A-L Chen, K Cheng, X-P Li
{"title":"High-Intensity Interval Training Increases Osteoarthritis-Associated Pain-Sensitive Threshold Through Reduction of Perineuronal Nets of the Medial Prefrontal Cortex in Rats.","authors":"X Zhang, F E Kong, C-S Lin, Z-Q Ye, A-L Chen, K Cheng, X-P Li","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>High-intensity interval training (HIIT) is considered an effective therapy strategy for improving chronic pain associated with osteoarthritis (OA). Perineuronal nets (PNNs) are specialized extracellular matrix structures in the cerebral cortex that play a crucial role in regulating chronic pain. However, little is unknown whether HIIT could alleviate OA pain sensitization by reducing PNN levels. This study aimed to determine whether HIIT could reduce sensitivity of the affected joint(s) to pain in a chronic pain model in rats with OA. A rat model of interest was induced by intra-articular injection of monosodium iodoacetate (MIA) into the right knee. Thereafter, the mechanical withdrawal thresholds (MWTs) and PNN levels in the contralateral medial prefrontal cortex (mPFC) were measured in rats in the presence or absence of HIIT alone or in combination with injection of chondroitinase-ABC (ChABC) into the contralateral mPFC (inducing the degradation of PNNs), respectively. Results indicated that rats with OA exhibited significant reductions in MWTs, but a significant increase in the PNN levels; that HIIT reversed changes in MWTs and PNN levels in rats with OA, and that pretreatment of ChABC abolished effects of HIIT on MWTs, with PNN levels not changed. We concluded that pain sensitization in rats with OA may correlate with an increase in PNN levels in the mPFC, and that HIIT may increases OA pain-sensitive threshold by reduction of the PNN levels in the mPFC. Keywords: Osteoarthritis, Chronic pain, Pain sensitization, High-intensity interval training, Perineuronal nets.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 6","pages":"1085-1097"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835209/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological research","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High-intensity interval training (HIIT) is considered an effective therapy strategy for improving chronic pain associated with osteoarthritis (OA). Perineuronal nets (PNNs) are specialized extracellular matrix structures in the cerebral cortex that play a crucial role in regulating chronic pain. However, little is unknown whether HIIT could alleviate OA pain sensitization by reducing PNN levels. This study aimed to determine whether HIIT could reduce sensitivity of the affected joint(s) to pain in a chronic pain model in rats with OA. A rat model of interest was induced by intra-articular injection of monosodium iodoacetate (MIA) into the right knee. Thereafter, the mechanical withdrawal thresholds (MWTs) and PNN levels in the contralateral medial prefrontal cortex (mPFC) were measured in rats in the presence or absence of HIIT alone or in combination with injection of chondroitinase-ABC (ChABC) into the contralateral mPFC (inducing the degradation of PNNs), respectively. Results indicated that rats with OA exhibited significant reductions in MWTs, but a significant increase in the PNN levels; that HIIT reversed changes in MWTs and PNN levels in rats with OA, and that pretreatment of ChABC abolished effects of HIIT on MWTs, with PNN levels not changed. We concluded that pain sensitization in rats with OA may correlate with an increase in PNN levels in the mPFC, and that HIIT may increases OA pain-sensitive threshold by reduction of the PNN levels in the mPFC. Keywords: Osteoarthritis, Chronic pain, Pain sensitization, High-intensity interval training, Perineuronal nets.
期刊介绍:
Physiological Research is a peer reviewed Open Access journal that publishes articles on normal and pathological physiology, biochemistry, biophysics, and pharmacology.
Authors can submit original, previously unpublished research articles, review articles, rapid or short communications.
Instructions for Authors - Respect the instructions carefully when submitting your manuscript. Submitted manuscripts or revised manuscripts that do not follow these Instructions will not be included into the peer-review process.
The articles are available in full versions as pdf files beginning with volume 40, 1991.
The journal publishes the online Ahead of Print /Pre-Press version of the articles that are searchable in Medline and can be cited.