{"title":"UAV rice panicle blast detection based on enhanced feature representation and optimized attention mechanism.","authors":"Shaodan Lin, Deyao Huang, Libin Wu, Zuxin Cheng, Dapeng Ye, Haiyong Weng","doi":"10.1186/s13007-025-01333-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Rice blast is one of the most destructive diseases in rice cultivation, significantly threatening global food security. Timely and precise detection of rice panicle blast is crucial for effective disease management and prevention of crop losses. This study introduces ConvGAM, a novel semantic segmentation model leveraging the ConvNeXt-Large backbone network and the Global Attention Mechanism (GAM). This design aims to enhance feature extraction and focus on critical image regions, addressing the challenges of detecting small and complex disease patterns in UAV-captured imagery. Furthermore, the model incorporates advanced loss functions to handle data imbalances effectively, supporting accurate classification across diverse disease severities.</p><p><strong>Results: </strong>The ConvGAM model, leveraging the ConvNeXt-Large backbone network and the Global Attention Mechanism (GAM), achieves outstanding performance in feature extraction, crucial for detecting small and complex disease patterns. Quantitative evaluation demonstrates that the model achieves an overall accuracy of 91.4%, a mean IoU of 79%, and an F1 score of 82% on the test set. The incorporation of Focal Tversky Loss further enhances the model's ability to handle imbalanced datasets, improving detection accuracy for rare and severe disease categories. Correlation coefficient analysis across disease severity levels indicates high consistency between predictions and ground truth, with values ranging from 0.962 to 0.993. These results confirm the model's reliability and robustness, highlighting its effectiveness in rice panicle blast detection under challenging conditions.</p><p><strong>Conclusion: </strong>The ConvGAM model demonstrates strong qualitative advantages in detecting rice panicle blast disease. By integrating advanced feature extraction with the ConvNeXt-Large backbone and GAM, the model achieves precise detection and classification across varying disease severities. The use of Focal Tversky Loss ensures robustness against dataset imbalances, enabling accurate identification of rare disease categories. Despite these strengths, future efforts should focus on improving classification accuracy and adapting the model to diverse environmental conditions. Additionally, optimizing model parameters and exploring advanced data augmentation techniques could further enhance its detection capabilities and expand its applicability to broader agricultural scenarios.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"10"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796125/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01333-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Rice blast is one of the most destructive diseases in rice cultivation, significantly threatening global food security. Timely and precise detection of rice panicle blast is crucial for effective disease management and prevention of crop losses. This study introduces ConvGAM, a novel semantic segmentation model leveraging the ConvNeXt-Large backbone network and the Global Attention Mechanism (GAM). This design aims to enhance feature extraction and focus on critical image regions, addressing the challenges of detecting small and complex disease patterns in UAV-captured imagery. Furthermore, the model incorporates advanced loss functions to handle data imbalances effectively, supporting accurate classification across diverse disease severities.
Results: The ConvGAM model, leveraging the ConvNeXt-Large backbone network and the Global Attention Mechanism (GAM), achieves outstanding performance in feature extraction, crucial for detecting small and complex disease patterns. Quantitative evaluation demonstrates that the model achieves an overall accuracy of 91.4%, a mean IoU of 79%, and an F1 score of 82% on the test set. The incorporation of Focal Tversky Loss further enhances the model's ability to handle imbalanced datasets, improving detection accuracy for rare and severe disease categories. Correlation coefficient analysis across disease severity levels indicates high consistency between predictions and ground truth, with values ranging from 0.962 to 0.993. These results confirm the model's reliability and robustness, highlighting its effectiveness in rice panicle blast detection under challenging conditions.
Conclusion: The ConvGAM model demonstrates strong qualitative advantages in detecting rice panicle blast disease. By integrating advanced feature extraction with the ConvNeXt-Large backbone and GAM, the model achieves precise detection and classification across varying disease severities. The use of Focal Tversky Loss ensures robustness against dataset imbalances, enabling accurate identification of rare disease categories. Despite these strengths, future efforts should focus on improving classification accuracy and adapting the model to diverse environmental conditions. Additionally, optimizing model parameters and exploring advanced data augmentation techniques could further enhance its detection capabilities and expand its applicability to broader agricultural scenarios.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.