A guide to eusocial insect faulted agent resilience and its engineering applications.

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Bioinspiration & Biomimetics Pub Date : 2025-02-18 DOI:10.1088/1748-3190/adb22b
James Hand, Bryan Watson
{"title":"A guide to eusocial insect faulted agent resilience and its engineering applications.","authors":"James Hand, Bryan Watson","doi":"10.1088/1748-3190/adb22b","DOIUrl":null,"url":null,"abstract":"<p><p>Resilience is a vital aspect of modern systems, especially in multi-agent systems, where faulted agents (agents who do not behave properly) can compromise system performance. In response to this need for resilience, we turn to biological inspiration. Eusocial insects are a subset of insects that have caste-based labor distribution and cooperative brood care. These insects face analogous challenges in maintaining and improving resilience to external threats, making them prime examples to find unique biological solutions to resilience problems. Thus, the central question of this work is:<i>How can eusocial insect behavior be used to inspire new approaches to prevent or limit faulted agents from impacting the performance of multi-agent systems</i>? Engineers, however, do not always have the necessary biological expertise to identify behaviors to mimic. This article seeks to fill the following identified gap in current research and resources:<i>There is need to study the impact of biologically inspired behaviors on faulted agent resilience, but engineers may struggle to identify sources in the biological literature to translate into engineering applications.</i>To address this question and the identified gap, we provide a guide identifying a large range of insect resilience behaviors and examples of possible implementation of these behaviors. This guide is a functional decomposition examining how eusocial insects prevent disease propagation that engineers can transfer to their systems when seeking to mitigate faulted agents. The presented functional decomposition is made of 148 identified functions across 7 levels, organized into 5 primary categories. This provides a guide for engineers to use when looking for sources of inspiration to improve system resilience. Additional discussion is also provided to offer potential implementations of these 148 functions, so as to encourage further work and usage of this work.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adb22b","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Resilience is a vital aspect of modern systems, especially in multi-agent systems, where faulted agents (agents who do not behave properly) can compromise system performance. In response to this need for resilience, we turn to biological inspiration. Eusocial insects are a subset of insects that have caste-based labor distribution and cooperative brood care. These insects face analogous challenges in maintaining and improving resilience to external threats, making them prime examples to find unique biological solutions to resilience problems. Thus, the central question of this work is:How can eusocial insect behavior be used to inspire new approaches to prevent or limit faulted agents from impacting the performance of multi-agent systems? Engineers, however, do not always have the necessary biological expertise to identify behaviors to mimic. This article seeks to fill the following identified gap in current research and resources:There is need to study the impact of biologically inspired behaviors on faulted agent resilience, but engineers may struggle to identify sources in the biological literature to translate into engineering applications.To address this question and the identified gap, we provide a guide identifying a large range of insect resilience behaviors and examples of possible implementation of these behaviors. This guide is a functional decomposition examining how eusocial insects prevent disease propagation that engineers can transfer to their systems when seeking to mitigate faulted agents. The presented functional decomposition is made of 148 identified functions across 7 levels, organized into 5 primary categories. This provides a guide for engineers to use when looking for sources of inspiration to improve system resilience. Additional discussion is also provided to offer potential implementations of these 148 functions, so as to encourage further work and usage of this work.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
昆虫过错代理复原力及其工程应用指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
期刊最新文献
A guide to eusocial insect faulted agent resilience and its engineering applications. Thermophoretic effect in natural photonics: Holographic study. Locomotion design of transverse ledge brachiation robot with active wrist joint for lateral posture compensation. A wing-flapping robot with a bio-inspired folding mechanism derived from the beetle's hind wing. Design and implementation of an independent-drive bionic dragonfly robot.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1