ChestX-Transcribe: a multimodal transformer for automated radiology report generation from chest x-rays.

IF 3.2 Q1 HEALTH CARE SCIENCES & SERVICES Frontiers in digital health Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI:10.3389/fdgth.2025.1535168
Prateek Singh, Sudhakar Singh
{"title":"ChestX-Transcribe: a multimodal transformer for automated radiology report generation from chest x-rays.","authors":"Prateek Singh, Sudhakar Singh","doi":"10.3389/fdgth.2025.1535168","DOIUrl":null,"url":null,"abstract":"<p><p>Radiology departments are under increasing pressure to meet the demand for timely and accurate diagnostics, especially with chest x-rays, a key modality for pulmonary condition assessment. Producing comprehensive and accurate radiological reports is a time-consuming process prone to errors, particularly in high-volume clinical environments. Automated report generation plays a crucial role in alleviating radiologists' workload, improving diagnostic accuracy, and ensuring consistency. This paper introduces <i>ChestX-Transcribe</i>, a multimodal transformer model that combines the Swin Transformer for extracting high-resolution visual features with DistilGPT for generating clinically relevant, semantically rich medical reports. Trained on the Indiana University Chest x-ray dataset, <i>ChestX-Transcribe</i> demonstrates state-of-the-art performance across BLEU, ROUGE, and METEOR metrics, outperforming prior models in producing clinically meaningful reports. However, the reliance on the Indiana University dataset introduces potential limitations, including selection bias, as the dataset is collected from specific hospitals within the Indiana Network for Patient Care. This may result in underrepresentation of certain demographics or conditions not prevalent in those healthcare settings, potentially skewing model predictions when applied to more diverse populations or different clinical environments. Additionally, the ethical implications of handling sensitive medical data, including patient privacy and data security, are considered. Despite these challenges, <i>ChestX-Transcribe</i> shows promising potential for enhancing real-world radiology workflows by automating the creation of medical reports, reducing diagnostic errors, and improving efficiency. The findings highlight the transformative potential of multimodal transformers in healthcare, with future work focusing on improving model generalizability and optimizing clinical integration.</p>","PeriodicalId":73078,"journal":{"name":"Frontiers in digital health","volume":"7 ","pages":"1535168"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790570/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdgth.2025.1535168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Radiology departments are under increasing pressure to meet the demand for timely and accurate diagnostics, especially with chest x-rays, a key modality for pulmonary condition assessment. Producing comprehensive and accurate radiological reports is a time-consuming process prone to errors, particularly in high-volume clinical environments. Automated report generation plays a crucial role in alleviating radiologists' workload, improving diagnostic accuracy, and ensuring consistency. This paper introduces ChestX-Transcribe, a multimodal transformer model that combines the Swin Transformer for extracting high-resolution visual features with DistilGPT for generating clinically relevant, semantically rich medical reports. Trained on the Indiana University Chest x-ray dataset, ChestX-Transcribe demonstrates state-of-the-art performance across BLEU, ROUGE, and METEOR metrics, outperforming prior models in producing clinically meaningful reports. However, the reliance on the Indiana University dataset introduces potential limitations, including selection bias, as the dataset is collected from specific hospitals within the Indiana Network for Patient Care. This may result in underrepresentation of certain demographics or conditions not prevalent in those healthcare settings, potentially skewing model predictions when applied to more diverse populations or different clinical environments. Additionally, the ethical implications of handling sensitive medical data, including patient privacy and data security, are considered. Despite these challenges, ChestX-Transcribe shows promising potential for enhancing real-world radiology workflows by automating the creation of medical reports, reducing diagnostic errors, and improving efficiency. The findings highlight the transformative potential of multimodal transformers in healthcare, with future work focusing on improving model generalizability and optimizing clinical integration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
ChestX-Transcribe: a multimodal transformer for automated radiology report generation from chest x-rays. Integrating general practitioners' and patients' perspectives in the development of a digital tool supporting primary care for older patients with multimorbidity: a focus group study. A roadmap to implementing machine learning in healthcare: from concept to practice. Breaking the cycle: a pilot study on autonomous Digital CBTe for recurrent binge eating. Exploring machine learning algorithms for predicting fertility preferences among reproductive age women in Nigeria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1