Maike Mayer, Maximilian Wohlgemuth, Anastasia Salome Straub, Sven Graetz, Lars Borchardt
{"title":"Hydrogenation of Organic Molecules via Direct Mechanocatalysis","authors":"Maike Mayer, Maximilian Wohlgemuth, Anastasia Salome Straub, Sven Graetz, Lars Borchardt","doi":"10.1002/anie.202424139","DOIUrl":null,"url":null,"abstract":"Mechanochemical hydrogenation of unsaturated C-C and C-O, as well as N-O and C-X bonds is successfully achieved without the use of solvents, ligands, or catalyst powders via ball milling. A variety of catalysts are electroplated onto the walls of the milling vessel, allowing for simple recycling and reuse of the catalytic material. Hydrogen gas is directly introduced into the milling vessel, eliminating the need for hydrogen donor compounds which contribute to waste production and suboptimal atom economy. This approach enables the quantitative hydrogenation of unsaturated carbon-carbon bonds, achieving near-complete conversion within just 20 minutes at ambient temperature and pressures as low as 1.5 bar. Carbonyls, nitro groups, and organohalides were converted within reaction times of up to 12 hours. Mechanistic investigations suggest the reaction to be following established mechanisms for hydrogenation. Finally, chemoselective hydrogenation of various reducible functional groups was explored, demonstrating the versatility and efficiency of this solvent-free mechanochemical approach with simple catalyst recycling for hydrogenation reactions.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"8 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202424139","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanochemical hydrogenation of unsaturated C-C and C-O, as well as N-O and C-X bonds is successfully achieved without the use of solvents, ligands, or catalyst powders via ball milling. A variety of catalysts are electroplated onto the walls of the milling vessel, allowing for simple recycling and reuse of the catalytic material. Hydrogen gas is directly introduced into the milling vessel, eliminating the need for hydrogen donor compounds which contribute to waste production and suboptimal atom economy. This approach enables the quantitative hydrogenation of unsaturated carbon-carbon bonds, achieving near-complete conversion within just 20 minutes at ambient temperature and pressures as low as 1.5 bar. Carbonyls, nitro groups, and organohalides were converted within reaction times of up to 12 hours. Mechanistic investigations suggest the reaction to be following established mechanisms for hydrogenation. Finally, chemoselective hydrogenation of various reducible functional groups was explored, demonstrating the versatility and efficiency of this solvent-free mechanochemical approach with simple catalyst recycling for hydrogenation reactions.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.