Yeon-Woo Cho, Min-Ji Kang, Joon-Ha Park, Yun-Sik Eom, Tae-Hyung Kim
{"title":"Spatially controlled multicellular differentiation of stem cells using triple factor-releasing metal–organic framework-coated nanoline arrays","authors":"Yeon-Woo Cho, Min-Ji Kang, Joon-Ha Park, Yun-Sik Eom, Tae-Hyung Kim","doi":"10.1038/s41467-025-56373-0","DOIUrl":null,"url":null,"abstract":"<p>Improved in vitro models are needed for regenerative therapy and drug screening. Here, we report on functionally aligned nanoparticle-trapped nanopattern arrays for spatially controlled, precise mesenchymal stem cell differentiation on a single substrate. The arrays comprise nanohole and nanoline arrays fabricated through interference lithography and selectively capture of UiO-67 metal–organic frameworks on nanoline arrays with a 99.8% efficiency using an optimised asymmetric spin-coating method. The UiO-67 metal–organic frameworks contain three osteogenic differentiation factors for sustained release over four weeks. The combination of differentiation factors and patterned array allows for generation of adipocytes, osteoblasts, and adipocyte–osteoblast mixtures on nanohole arrays, nanoline arrays, and at the nanohole–nanoline interface, respectively, with mature osteoblasts exhibiting higher marker expression and mineralisation. The sustained release patterned array holds potential for constructing advanced therapeutic and disease state in vitro cellular models.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"23 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56373-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Improved in vitro models are needed for regenerative therapy and drug screening. Here, we report on functionally aligned nanoparticle-trapped nanopattern arrays for spatially controlled, precise mesenchymal stem cell differentiation on a single substrate. The arrays comprise nanohole and nanoline arrays fabricated through interference lithography and selectively capture of UiO-67 metal–organic frameworks on nanoline arrays with a 99.8% efficiency using an optimised asymmetric spin-coating method. The UiO-67 metal–organic frameworks contain three osteogenic differentiation factors for sustained release over four weeks. The combination of differentiation factors and patterned array allows for generation of adipocytes, osteoblasts, and adipocyte–osteoblast mixtures on nanohole arrays, nanoline arrays, and at the nanohole–nanoline interface, respectively, with mature osteoblasts exhibiting higher marker expression and mineralisation. The sustained release patterned array holds potential for constructing advanced therapeutic and disease state in vitro cellular models.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.