A truncated pre-F protein mRNA vaccine elicits an enhanced immune response and protection against respiratory syncytial virus

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-02-05 DOI:10.1038/s41467-025-56302-1
Min Lin, Yifan Yin, Xiaomeng Zhao, Chen Wang, Xueqing Zhu, Letao Zhan, Li Chen, Siling Wang, Xue Lin, Jun Zhang, Ningshao Xia, Zizheng Zheng
{"title":"A truncated pre-F protein mRNA vaccine elicits an enhanced immune response and protection against respiratory syncytial virus","authors":"Min Lin, Yifan Yin, Xiaomeng Zhao, Chen Wang, Xueqing Zhu, Letao Zhan, Li Chen, Siling Wang, Xue Lin, Jun Zhang, Ningshao Xia, Zizheng Zheng","doi":"10.1038/s41467-025-56302-1","DOIUrl":null,"url":null,"abstract":"<p>The Food and Drug Administration (FDA) has approved vaccines designed by GSK, Pfizer and Moderna to protect high-risk populations against respiratory syncytial virus (RSV). These vaccines employ the pre-fusion F (pre-F) protein as the immunogen. In this study, we explored an mRNA vaccine based on a modified pre-F protein called LC2DM-lipid nanoparticle (LC2DM-LNP). This vaccine features a truncated version of the pre-F protein that is anchored to the cell membrane. Our experiments in young and old female mice revealed that the LC2DM-LNP vaccine elicited robust neutralizing antibody titers. Moreover, LC2DM-LNP prompted a Th1-skewed T-cell immune response in female rodent models. Female cotton rats immunized with LC2DM-LNP demonstrated strong immunity to RSV, without signs of vaccine-enhanced respiratory disease (VERD), even in cases of breakthrough infection. Importantly, when administered to pregnant female cotton rats, LC2DM-LNP ensured the transfer of pre-F-specific antibodies to the offspring and provided protection against RSV without increasing lung inflammation. Our findings suggest that LC2DM-LNP could serve as an alternative RSV vaccine candidate for high-risk groups.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"25 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56302-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Food and Drug Administration (FDA) has approved vaccines designed by GSK, Pfizer and Moderna to protect high-risk populations against respiratory syncytial virus (RSV). These vaccines employ the pre-fusion F (pre-F) protein as the immunogen. In this study, we explored an mRNA vaccine based on a modified pre-F protein called LC2DM-lipid nanoparticle (LC2DM-LNP). This vaccine features a truncated version of the pre-F protein that is anchored to the cell membrane. Our experiments in young and old female mice revealed that the LC2DM-LNP vaccine elicited robust neutralizing antibody titers. Moreover, LC2DM-LNP prompted a Th1-skewed T-cell immune response in female rodent models. Female cotton rats immunized with LC2DM-LNP demonstrated strong immunity to RSV, without signs of vaccine-enhanced respiratory disease (VERD), even in cases of breakthrough infection. Importantly, when administered to pregnant female cotton rats, LC2DM-LNP ensured the transfer of pre-F-specific antibodies to the offspring and provided protection against RSV without increasing lung inflammation. Our findings suggest that LC2DM-LNP could serve as an alternative RSV vaccine candidate for high-risk groups.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
A cosmogenic 10Be anomaly during the late Miocene as independent time marker for marine archives Single-cell RNA sequencing defines distinct disease subtypes and reveals hypo-responsiveness to interferon in asymptomatic Waldenstrom’s Macroglobulinemia Visualization of chromosomal reorganization induced by heterologous fusions in the mammalian nucleus Yeast-derived volatiles orchestrate an insect-yeast mutualism with oriental armyworm moths Trajectory analysis of hepatic stellate cell differentiation reveals metabolic regulation of cell commitment and fibrosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1