Seyed Navid Elyasi, Matteo A C Rossi and Marco G Genoni
{"title":"Experimental simulation of daemonic work extraction in open quantum batteries on a digital quantum computer","authors":"Seyed Navid Elyasi, Matteo A C Rossi and Marco G Genoni","doi":"10.1088/2058-9565/adae2d","DOIUrl":null,"url":null,"abstract":"The possibility of extracting more work from a physical system thanks to the information obtained from measurements has been a topic of fundamental interest in the context of thermodynamics since the formulation of the Maxwell’s demon thought experiment. We here consider this problem from the perspective of an open quantum battery interacting with an environment that can be continuously measured. By modeling it via a continuously monitored collisional model, we show how to implement the corresponding dynamics as a quantum circuit, including the final conditional feedback unitary evolution that allows to enhance the amount of work extracted. By exploiting the flexibility of IBM quantum computers and by properly modelling the corresponding quantum circuit, we experimentally simulate the work extraction protocol showing how the obtained experimental values of the daemonic extracted work are close to their theoretical upper bound quantified by the so-called daemonic ergotropy. We also demonstrate how by properly modelling the noise affecting the quantum circuit, one can improve the work extraction protocol by optimizing the corresponding extraction unitary feedback operation.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"55 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adae2d","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The possibility of extracting more work from a physical system thanks to the information obtained from measurements has been a topic of fundamental interest in the context of thermodynamics since the formulation of the Maxwell’s demon thought experiment. We here consider this problem from the perspective of an open quantum battery interacting with an environment that can be continuously measured. By modeling it via a continuously monitored collisional model, we show how to implement the corresponding dynamics as a quantum circuit, including the final conditional feedback unitary evolution that allows to enhance the amount of work extracted. By exploiting the flexibility of IBM quantum computers and by properly modelling the corresponding quantum circuit, we experimentally simulate the work extraction protocol showing how the obtained experimental values of the daemonic extracted work are close to their theoretical upper bound quantified by the so-called daemonic ergotropy. We also demonstrate how by properly modelling the noise affecting the quantum circuit, one can improve the work extraction protocol by optimizing the corresponding extraction unitary feedback operation.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.