Fahamidur Rahaman Rafi , Nafeya Rahman Heya , Md Sadman Hafiz , Jamin Rahman Jim , Md Mohsin Kabir , M.F. Mridha
{"title":"A systematic review of single-cell RNA sequencing applications and innovations","authors":"Fahamidur Rahaman Rafi , Nafeya Rahman Heya , Md Sadman Hafiz , Jamin Rahman Jim , Md Mohsin Kabir , M.F. Mridha","doi":"10.1016/j.compbiolchem.2025.108362","DOIUrl":null,"url":null,"abstract":"<div><div>Bulk RNA sequencing is one type of RNA sequencing technique, as well as targeted RNA sequencing and whole transcriptome sequencing. It provides valuable insights into gene expression in specific cell populations or regions. However, these methods often miss the diversity of cells within complex tissues. This restriction is overcome by single-cell RNA sequencing, which records gene expression at the single-cell level. It offers a detailed picture of the diversity of cells. It is essential to study glucose homeostasis. It offers thorough explanations of cellular variation. Networks and Governance Dynamics The use of scRNA-seq in islet cells is reviewed in this study, along with sample preparation, sequencing, and computational analysis. It highlights advances in understanding cell types. Gene activity and cell interactions. Along with the challenges and limitations of scRNA-seq, this review highlights the importance of scRNA-seq in understanding complex biological processes and diseases. It is an essential resource for future research and method development in this field, which will help to build personalized treatment.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"115 ","pages":"Article 108362"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125000222","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bulk RNA sequencing is one type of RNA sequencing technique, as well as targeted RNA sequencing and whole transcriptome sequencing. It provides valuable insights into gene expression in specific cell populations or regions. However, these methods often miss the diversity of cells within complex tissues. This restriction is overcome by single-cell RNA sequencing, which records gene expression at the single-cell level. It offers a detailed picture of the diversity of cells. It is essential to study glucose homeostasis. It offers thorough explanations of cellular variation. Networks and Governance Dynamics The use of scRNA-seq in islet cells is reviewed in this study, along with sample preparation, sequencing, and computational analysis. It highlights advances in understanding cell types. Gene activity and cell interactions. Along with the challenges and limitations of scRNA-seq, this review highlights the importance of scRNA-seq in understanding complex biological processes and diseases. It is an essential resource for future research and method development in this field, which will help to build personalized treatment.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.