Predicting test failures induced by software defects: A lightweight alternative to software defect prediction and its industrial application

IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Journal of Systems and Software Pub Date : 2025-02-03 DOI:10.1016/j.jss.2025.112360
Lech Madeyski , Szymon Stradowski
{"title":"Predicting test failures induced by software defects: A lightweight alternative to software defect prediction and its industrial application","authors":"Lech Madeyski ,&nbsp;Szymon Stradowski","doi":"10.1016/j.jss.2025.112360","DOIUrl":null,"url":null,"abstract":"<div><h3>Context:</h3><div>Machine Learning Software Defect Prediction (ML SDP) is a promising method to improve the quality and minimise the cost of software development.</div></div><div><h3>Objective:</h3><div>We aim to: (1) apropose and develop a Lightweight Alternative to SDP (LA2SDP) that predicts test failures induced by software defects to allow pinpointing defective software modules thanks to available mapping of predicted test failures to past defects and corrected modules, (2) preliminary evaluate the proposed method in a real-world Nokia 5G scenario.</div></div><div><h3>Method:</h3><div>We train machine learning models using test failures that come from confirmed software defects already available in the Nokia 5G environment. We implement LA2SDP using five supervised ML algorithms, together with their tuned versions, and use eXplainable AI (XAI) to provide feedback to stakeholders and initiate quality improvement actions.</div></div><div><h3>Results:</h3><div>We have shown that LA2SDP is feasible in vivo using test failure-to-defect report mapping readily available within the Nokia 5G system-level test process, achieving good predictive performance. Specifically, CatBoost Gradient Boosting turned out to perform the best and achieved satisfactory Matthew’s Correlation Coefficient (MCC) results for our feasibility study.</div></div><div><h3>Conclusions:</h3><div>Our efforts have successfully defined, developed, and validated LA2SDP, using the sliding and expanding window approaches on an industrial data set.</div></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"223 ","pages":"Article 112360"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121225000287","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Context:

Machine Learning Software Defect Prediction (ML SDP) is a promising method to improve the quality and minimise the cost of software development.

Objective:

We aim to: (1) apropose and develop a Lightweight Alternative to SDP (LA2SDP) that predicts test failures induced by software defects to allow pinpointing defective software modules thanks to available mapping of predicted test failures to past defects and corrected modules, (2) preliminary evaluate the proposed method in a real-world Nokia 5G scenario.

Method:

We train machine learning models using test failures that come from confirmed software defects already available in the Nokia 5G environment. We implement LA2SDP using five supervised ML algorithms, together with their tuned versions, and use eXplainable AI (XAI) to provide feedback to stakeholders and initiate quality improvement actions.

Results:

We have shown that LA2SDP is feasible in vivo using test failure-to-defect report mapping readily available within the Nokia 5G system-level test process, achieving good predictive performance. Specifically, CatBoost Gradient Boosting turned out to perform the best and achieved satisfactory Matthew’s Correlation Coefficient (MCC) results for our feasibility study.

Conclusions:

Our efforts have successfully defined, developed, and validated LA2SDP, using the sliding and expanding window approaches on an industrial data set.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Systems and Software
Journal of Systems and Software 工程技术-计算机:理论方法
CiteScore
8.60
自引率
5.70%
发文量
193
审稿时长
16 weeks
期刊介绍: The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to: •Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution •Agile, model-driven, service-oriented, open source and global software development •Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems •Human factors and management concerns of software development •Data management and big data issues of software systems •Metrics and evaluation, data mining of software development resources •Business and economic aspects of software development processes The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.
期刊最新文献
Editorial Board Predicting test failures induced by software defects: A lightweight alternative to software defect prediction and its industrial application An Attention-based Wide and Deep Neural Network for Reentrancy Vulnerability Detection in Smart Contracts The AmbiTRUS framework for identifying potential ambiguity in user stories An empirical analysis of feature fusion task heads of ViT pre-trained models on OOD classification tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1