An Attention-based Wide and Deep Neural Network for Reentrancy Vulnerability Detection in Smart Contracts

IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Journal of Systems and Software Pub Date : 2025-02-03 DOI:10.1016/j.jss.2025.112361
Samuel Banning Osei , Rubing Huang , Zhongchen Ma
{"title":"An Attention-based Wide and Deep Neural Network for Reentrancy Vulnerability Detection in Smart Contracts","authors":"Samuel Banning Osei ,&nbsp;Rubing Huang ,&nbsp;Zhongchen Ma","doi":"10.1016/j.jss.2025.112361","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, smart contracts have become integral to blockchain applications, offering decentralized, transparent, and tamper-proof execution of agreements. However, vulnerabilities in smart contracts pose significant security risks, leading to financial losses. This paper presents an Attention-based Wide and Deep Neural Network (AWDNN) for Reentrancy vulnerability Detection in Ethereum smart contracts. By emphasizing crucial smart contract features, AWDNN enhances its precision in identifying complex vulnerability patterns. Our approach includes three phases: code optimization, vectorization, and vulnerability detection. We streamline smart contract code by removing extraneous components and extracting key fragments. These fragments are transformed into vectors that capture the smart contract’s semantic features, and subsequently subjected through the wide and deep neural network to detect vulnerabilities. Experimental results show that our model performs well compared to existing tools. Future work aims to detect additional vulnerabilities and incorporate advanced vectorization techniques to enhance efficiency.</div></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"223 ","pages":"Article 112361"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121225000299","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, smart contracts have become integral to blockchain applications, offering decentralized, transparent, and tamper-proof execution of agreements. However, vulnerabilities in smart contracts pose significant security risks, leading to financial losses. This paper presents an Attention-based Wide and Deep Neural Network (AWDNN) for Reentrancy vulnerability Detection in Ethereum smart contracts. By emphasizing crucial smart contract features, AWDNN enhances its precision in identifying complex vulnerability patterns. Our approach includes three phases: code optimization, vectorization, and vulnerability detection. We streamline smart contract code by removing extraneous components and extracting key fragments. These fragments are transformed into vectors that capture the smart contract’s semantic features, and subsequently subjected through the wide and deep neural network to detect vulnerabilities. Experimental results show that our model performs well compared to existing tools. Future work aims to detect additional vulnerabilities and incorporate advanced vectorization techniques to enhance efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Systems and Software
Journal of Systems and Software 工程技术-计算机:理论方法
CiteScore
8.60
自引率
5.70%
发文量
193
审稿时长
16 weeks
期刊介绍: The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to: •Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution •Agile, model-driven, service-oriented, open source and global software development •Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems •Human factors and management concerns of software development •Data management and big data issues of software systems •Metrics and evaluation, data mining of software development resources •Business and economic aspects of software development processes The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.
期刊最新文献
Editorial Board Requirements extraction from model-based systems engineering: A systematic literature review A systematic mapping study of crowd knowledge enhanced software engineering research using Stack Overflow Sóley: Automated detection of logic vulnerabilities in Ethereum smart contracts using large language models Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1