Liwen Wang , Sheng Liu , Geng Chen , Yongsheng Zhang , Chuanfeng Li , Guangcan Guo
{"title":"The robustness of skyrmion numbers of structured optical fields in atmospheric turbulence","authors":"Liwen Wang , Sheng Liu , Geng Chen , Yongsheng Zhang , Chuanfeng Li , Guangcan Guo","doi":"10.1016/j.optcom.2025.131568","DOIUrl":null,"url":null,"abstract":"<div><div>The development of vector optical fields has brought forth numerous applications. Among these optical fields, a particular class of vector vortex beams has emerged, leading to the emergence of intriguing optical skyrmion fields characterized by skyrmion numbers. The optical skyrmion fields are well-defined by their effective magnetization and possess topologically protected configurations. It is anticipated that this type of optical structure can be exploited for encoding information in optical communication, even under perturbations such as turbulent air, optical fibers, and general random media. In this study, we numerically demonstrate that the skyrmion numbers of optical skyrmion fields exhibit a certain degree of robustness to atmospheric turbulence, even though their intensity, phase and polarization patterns are distorted. Intriguingly, it is also observed that a larger difference between the absolute values of two azimuthal indices of the vectorial structured light field can lead to a superior level of resilience. These properties not only enhance the versatility of skyrmion fields and their numbers, but also open up new possibilities for their use in various applications across noisy channels.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"579 ","pages":"Article 131568"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825000963","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of vector optical fields has brought forth numerous applications. Among these optical fields, a particular class of vector vortex beams has emerged, leading to the emergence of intriguing optical skyrmion fields characterized by skyrmion numbers. The optical skyrmion fields are well-defined by their effective magnetization and possess topologically protected configurations. It is anticipated that this type of optical structure can be exploited for encoding information in optical communication, even under perturbations such as turbulent air, optical fibers, and general random media. In this study, we numerically demonstrate that the skyrmion numbers of optical skyrmion fields exhibit a certain degree of robustness to atmospheric turbulence, even though their intensity, phase and polarization patterns are distorted. Intriguingly, it is also observed that a larger difference between the absolute values of two azimuthal indices of the vectorial structured light field can lead to a superior level of resilience. These properties not only enhance the versatility of skyrmion fields and their numbers, but also open up new possibilities for their use in various applications across noisy channels.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.