Hydrochemical characteristics and evolution of geothermal waters in western Yunnan, China based on self-organizing map and hydrogeochemical simulation

IF 3.1 3区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Applied Geochemistry Pub Date : 2025-02-01 DOI:10.1016/j.apgeochem.2025.106291
Bo Li , Guangcai Wang , Fei Liu , Zheming Shi , Qingmin Kong , Shouchuan Zhang , Xin Yan , Fu Liao , Liang Guo , Chenglong Liu
{"title":"Hydrochemical characteristics and evolution of geothermal waters in western Yunnan, China based on self-organizing map and hydrogeochemical simulation","authors":"Bo Li ,&nbsp;Guangcai Wang ,&nbsp;Fei Liu ,&nbsp;Zheming Shi ,&nbsp;Qingmin Kong ,&nbsp;Shouchuan Zhang ,&nbsp;Xin Yan ,&nbsp;Fu Liao ,&nbsp;Liang Guo ,&nbsp;Chenglong Liu","doi":"10.1016/j.apgeochem.2025.106291","DOIUrl":null,"url":null,"abstract":"<div><div>Ascertaining the hydrochemical features of geothermal waters and their spatial distribution and the associated hydrogeochemical regimes in complex geothermal areas with intense tectonic and hydrothermal activities is important for hydrothermal resource management, but still remains difficult. Western Yunnan, located in the Mediterranean–Himalayan geothermal zone and collision zone between the Indian and Eurasian plates with diverse hydrothermal activities and temperatures, is an ideal area for such study, which was realized by utilizing self-organizing map method (SOM), hydrogeochemical simulations and solute geothermometers in this study. The combined results show that four geothermal water groups with different hydrogeochemical features were discerned. The Group 1 geothermal waters are HCO<sub>3</sub>–Na type, and they have relatively high reservoir temperatures ranging from 170 to 200 °C and moderate d-excess (d-excess = δ<sup>2</sup>H-8∗δ<sup>18</sup>O), whose major components originate from alkaline feldspar dissolution during the deep circulation. The hydrogeochemical type of Group 2 is HCO<sub>3</sub>–Ca–Mg with the largest d-excess and the lowest reservoir temperatures ranging from 50 to 100 °C, and carbonate mineral dissolutions are the source of their major components. Group 3 is characterized by high acidity and abundant SO<sub>4</sub>, which is from shallow groundwaters heated by high-temperature steam comprising H<sub>2</sub>S, with the smallest d-excess due to strong hydrothermal alteration. Group 4 (Cl–HCO<sub>3</sub>–Na/HCO<sub>3</sub>–Cl–Na type) possesses a smaller d-excess and the highest reservoir temperatures ranging from 160 to 240 °C, resulting from deep NaCl-type parent fluid replenishment under the influence of magmatic input. During the upward migration, alkaline feldspar dissolution followed by extensive steam loss induces elevated concentrations. Furthermore, CO<sub>2</sub> degassing is another vital process that affects geothermal waters evolution at high temperatures. In this study, coupling SOM network clustering and hydrogeochemical simulation sheds new light on the extraction of hydrogeochemical characteristics and evolution information.</div></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"181 ","pages":"Article 106291"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292725000149","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ascertaining the hydrochemical features of geothermal waters and their spatial distribution and the associated hydrogeochemical regimes in complex geothermal areas with intense tectonic and hydrothermal activities is important for hydrothermal resource management, but still remains difficult. Western Yunnan, located in the Mediterranean–Himalayan geothermal zone and collision zone between the Indian and Eurasian plates with diverse hydrothermal activities and temperatures, is an ideal area for such study, which was realized by utilizing self-organizing map method (SOM), hydrogeochemical simulations and solute geothermometers in this study. The combined results show that four geothermal water groups with different hydrogeochemical features were discerned. The Group 1 geothermal waters are HCO3–Na type, and they have relatively high reservoir temperatures ranging from 170 to 200 °C and moderate d-excess (d-excess = δ2H-8∗δ18O), whose major components originate from alkaline feldspar dissolution during the deep circulation. The hydrogeochemical type of Group 2 is HCO3–Ca–Mg with the largest d-excess and the lowest reservoir temperatures ranging from 50 to 100 °C, and carbonate mineral dissolutions are the source of their major components. Group 3 is characterized by high acidity and abundant SO4, which is from shallow groundwaters heated by high-temperature steam comprising H2S, with the smallest d-excess due to strong hydrothermal alteration. Group 4 (Cl–HCO3–Na/HCO3–Cl–Na type) possesses a smaller d-excess and the highest reservoir temperatures ranging from 160 to 240 °C, resulting from deep NaCl-type parent fluid replenishment under the influence of magmatic input. During the upward migration, alkaline feldspar dissolution followed by extensive steam loss induces elevated concentrations. Furthermore, CO2 degassing is another vital process that affects geothermal waters evolution at high temperatures. In this study, coupling SOM network clustering and hydrogeochemical simulation sheds new light on the extraction of hydrogeochemical characteristics and evolution information.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Geochemistry
Applied Geochemistry 地学-地球化学与地球物理
CiteScore
6.10
自引率
8.80%
发文量
272
审稿时长
65 days
期刊介绍: Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application. Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.
期刊最新文献
Editorial Board Monsoonal rainfall initiates autochthonous alteration of dissolved organic matter composition in Indian groundwaters Accumulation and maturation of organic matter in shales: The coal-bearing Permian Longtan Formation at Tucheng Syncline, Southwestern Guizhou, China Chemostratigraphy of the Cretaceous Hue Shale in Arctic Alaska: Exploring paleoceanographic controls on trace element enrichment, organic matter accumulation, and source-rock evolution Global sensitivity analysis of reactive transport modelling for the geochemical evolution of a high-level radioactive waste repository
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1