{"title":"Research Status and Development Trend of Greenhouse Gas in Wetlands: A Bibliometric Visualization Analysis","authors":"Gege Zhu, Yan Wang, Anshu Huang, Yingying Qin","doi":"10.1002/ece3.70938","DOIUrl":null,"url":null,"abstract":"<p>With the intensification of global warming, wetland greenhouse gas (GHG) emissions have attracted worldwide attention. However, the scientific understanding of wetland GHGs is still limited. To gain a comprehensive and systematic understanding of the current research status and development trends in wetland GHGs. We selected 1627 papers related to wetland GHG research from the Web of Science Core Collection database and used the bibliometric visualization analysis method to reveal the annual publication, main core research forces, research hotspots, and trends in this field. The results showed that the research in this field shows a steady upward trend. United States research institutions and scholars play a key role in this field. The research on “climate change” based on three major wetland GHGs (carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), and nitrous oxide (N<sub>2</sub>O)) has been continuously gaining popularity. In recent years, “water” has become an emerging core topic. More and more studies have focused on enhancing wetland pollutant treatment capacity, improving wetland ecosystem productivity, maintaining water level stability, strengthening blue carbon sink function, exploring remote sensing applications in wetlands, and promoting wetland restoration to reduce GHG emissions. Furthermore, we discussed the influencing factors of the emission of CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O in wetlands and summarized the potential methods to reduce GHG emissions. The findings provide scientific guidance and reference on wetland sustainable development and GHG emission reduction.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.70938","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70938","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the intensification of global warming, wetland greenhouse gas (GHG) emissions have attracted worldwide attention. However, the scientific understanding of wetland GHGs is still limited. To gain a comprehensive and systematic understanding of the current research status and development trends in wetland GHGs. We selected 1627 papers related to wetland GHG research from the Web of Science Core Collection database and used the bibliometric visualization analysis method to reveal the annual publication, main core research forces, research hotspots, and trends in this field. The results showed that the research in this field shows a steady upward trend. United States research institutions and scholars play a key role in this field. The research on “climate change” based on three major wetland GHGs (carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) has been continuously gaining popularity. In recent years, “water” has become an emerging core topic. More and more studies have focused on enhancing wetland pollutant treatment capacity, improving wetland ecosystem productivity, maintaining water level stability, strengthening blue carbon sink function, exploring remote sensing applications in wetlands, and promoting wetland restoration to reduce GHG emissions. Furthermore, we discussed the influencing factors of the emission of CO2, CH4, and N2O in wetlands and summarized the potential methods to reduce GHG emissions. The findings provide scientific guidance and reference on wetland sustainable development and GHG emission reduction.
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.