{"title":"A Robust Control Method for Reliability Improvement of Cascade H-Bridge STATCOM Under DC-Link Capacitance Uncertainty","authors":"Maede Azimi, Mehdi Asadi","doi":"10.1155/er/4812003","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This paper proposes a robust DC-link voltage controller designed for a multilevel-based static synchronous compensator (STATCOM), addressing both DC-link capacitance degradation and load variations. The uncertainty in DC-link capacitance is modeled as an external perturbation, leading to the development of a second-order sliding mode controller (SOSMC) based on a twisting algorithm. This controller effectively manages these uncertainties, providing high stability and robustness against parameter variations and external disturbances. Furthermore, it reduces unwanted chattering and enhances overall system performance. The impact of DC-link capacitance uncertainty on the reliability of multilevel converters is analyzed, comparing the proposed SOSMC with traditional proportional–integral (PI) controllers in the Simulink MATLAB environment. The results demonstrate that the SOSMC method outperforms the PI controller under 33% uncertainty in DC-link capacitance over 5 years. The proposed control scheme not only meets reactive power demands but also effectively manages uncertainties in DC-link capacitors. Additionally, the twisting algorithm maintains an acceptable total harmonic distortion (THD) index on the AC side, thereby improving overall reliability while reducing maintenance costs.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/4812003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/4812003","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a robust DC-link voltage controller designed for a multilevel-based static synchronous compensator (STATCOM), addressing both DC-link capacitance degradation and load variations. The uncertainty in DC-link capacitance is modeled as an external perturbation, leading to the development of a second-order sliding mode controller (SOSMC) based on a twisting algorithm. This controller effectively manages these uncertainties, providing high stability and robustness against parameter variations and external disturbances. Furthermore, it reduces unwanted chattering and enhances overall system performance. The impact of DC-link capacitance uncertainty on the reliability of multilevel converters is analyzed, comparing the proposed SOSMC with traditional proportional–integral (PI) controllers in the Simulink MATLAB environment. The results demonstrate that the SOSMC method outperforms the PI controller under 33% uncertainty in DC-link capacitance over 5 years. The proposed control scheme not only meets reactive power demands but also effectively manages uncertainties in DC-link capacitors. Additionally, the twisting algorithm maintains an acceptable total harmonic distortion (THD) index on the AC side, thereby improving overall reliability while reducing maintenance costs.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system