Classification of Vaginal Cleanliness Grades through Surface-Enhanced Raman Spectral Analysis via The Deep-Learning Variational Autoencoder–Long Short-Term Memory Model
Jia-Wei Tang, Xin-Ru Wen, Hui-Min Chen, Jie Chen, Kun-Hui Hong, Quan Yuan, Muhammad Usman, Liang Wang
{"title":"Classification of Vaginal Cleanliness Grades through Surface-Enhanced Raman Spectral Analysis via The Deep-Learning Variational Autoencoder–Long Short-Term Memory Model","authors":"Jia-Wei Tang, Xin-Ru Wen, Hui-Min Chen, Jie Chen, Kun-Hui Hong, Quan Yuan, Muhammad Usman, Liang Wang","doi":"10.1002/aisy.202470059","DOIUrl":null,"url":null,"abstract":"<p><b>Deep-Learning-Guided Surface-Enhanced Raman Spectroscopy</b>\n </p><p>In article number 2400587, Muhammad Usman, Liang Wang, and co-workers present a novel approach combining deep-learning-guided surface-enhanced Raman spectroscopy (SERS) and a variational autoencoder (VAE) with a long short-term memory (LSTM) neural network to classify vaginal cleanliness levels rapidly and accurately. Enhanced spectral quality and an optimized VAE–LSTM model yielded an 85% accuracy on blind test data. This method, which improves signal-to-noise ratios and diagnostic efficiency, shows strong potential for clinical applications in assessing vaginal cleanliness through SERS analysis of vaginal secretions.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 12","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202470059","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202470059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
In article number 2400587, Muhammad Usman, Liang Wang, and co-workers present a novel approach combining deep-learning-guided surface-enhanced Raman spectroscopy (SERS) and a variational autoencoder (VAE) with a long short-term memory (LSTM) neural network to classify vaginal cleanliness levels rapidly and accurately. Enhanced spectral quality and an optimized VAE–LSTM model yielded an 85% accuracy on blind test data. This method, which improves signal-to-noise ratios and diagnostic efficiency, shows strong potential for clinical applications in assessing vaginal cleanliness through SERS analysis of vaginal secretions.