Transition metal carbide-based nanostructures for electrochemical hydrogen and oxygen evolution reactions

EcoEnergy Pub Date : 2023-12-28 DOI:10.1002/ece2.18
Md. Selim Arif Sher Shah, Gyu Yong Jang, Kan Zhang, Jong Hyeok Park
{"title":"Transition metal carbide-based nanostructures for electrochemical hydrogen and oxygen evolution reactions","authors":"Md. Selim Arif Sher Shah,&nbsp;Gyu Yong Jang,&nbsp;Kan Zhang,&nbsp;Jong Hyeok Park","doi":"10.1002/ece2.18","DOIUrl":null,"url":null,"abstract":"<p>Extensive consumption of limited fossil fuel resources generates serious environmental problems, such as release of large amounts of the greenhouse gas CO<sub>2</sub>. It is, therefore, urgently necessary to look for alternative energy resources to meet increasing energy demands. Hydrogen is a clean, environmentally friendly, and sustainable energy source. Electrochemical water splitting is one of the cleanest and greenest technologies available for hydrogen production. Unfortunately, large-scale water electrolysis is hindered by the high costs of catalysts, since noble metal-based materials have been demonstrated to be the best catalysts (e.g., Pt for the cathode and Ru/Ir-oxide for the anode catalyst). Recently, transition metal carbides (TMCs) have drawn significant attention for use in electrochemical water splitting, especially for hydrogen evolution reactions, owing to their high intrinsic catalytic activities, extraordinary electrical conductivities, and abundant source materials. TMCs exhibit Pt-like electronic structures and are considered suitable alternatives for Pt. This review systematically summarizes recent advances in the uses of representative TMCs for the electrochemical hydrogen and oxygen evolution reactions and highlights advantages in the electrocatalytic effects provided by nanostructuring. Finally, existing challenges and future perspectives for use of these electrocatalysts are discussed.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"1 2","pages":"344-374"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.18","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoEnergy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece2.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Extensive consumption of limited fossil fuel resources generates serious environmental problems, such as release of large amounts of the greenhouse gas CO2. It is, therefore, urgently necessary to look for alternative energy resources to meet increasing energy demands. Hydrogen is a clean, environmentally friendly, and sustainable energy source. Electrochemical water splitting is one of the cleanest and greenest technologies available for hydrogen production. Unfortunately, large-scale water electrolysis is hindered by the high costs of catalysts, since noble metal-based materials have been demonstrated to be the best catalysts (e.g., Pt for the cathode and Ru/Ir-oxide for the anode catalyst). Recently, transition metal carbides (TMCs) have drawn significant attention for use in electrochemical water splitting, especially for hydrogen evolution reactions, owing to their high intrinsic catalytic activities, extraordinary electrical conductivities, and abundant source materials. TMCs exhibit Pt-like electronic structures and are considered suitable alternatives for Pt. This review systematically summarizes recent advances in the uses of representative TMCs for the electrochemical hydrogen and oxygen evolution reactions and highlights advantages in the electrocatalytic effects provided by nanostructuring. Finally, existing challenges and future perspectives for use of these electrocatalysts are discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Advances in the understanding of selective CO2 reduction catalysis Sustainability assessment of seawater splitting: Prospects, challenges, and future directions High-performance vanadium oxide-based aqueous zinc batteries: Organic molecule modification, challenges, and future prospects Principles of designing electrocatalysts to boost C–N coupling reactions for urea synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1