{"title":"Generalized covariance-based inference for models set-identified from independence restrictions","authors":"Christian Gourieroux, Joann Jasiak","doi":"10.1111/jtsa.12779","DOIUrl":null,"url":null,"abstract":"<p>This article develops statistical inference methods for a class of set-identified models, where the errors are known functions of observations and the parameters satisfy either serial or/and cross-sectional independence conditions. This class of models includes the independent component analysis (ICA), Structural Vector Autoregressive (SVAR), and multi-variate mixed causal–non-causal models. We use the Generalized Covariance (GCov) estimator to compute the residual-based portmanteau statistic for testing the error independence hypothesis. Next, we build the confidence sets for the identified sets of parameters by inverting the test statistic. We also discuss the choice (design) of these statistics. The approach is illustrated by simulations examining the under-identification condition in an ICA model and an application to financial return series.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"46 2","pages":"300-324"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12779","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12779","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This article develops statistical inference methods for a class of set-identified models, where the errors are known functions of observations and the parameters satisfy either serial or/and cross-sectional independence conditions. This class of models includes the independent component analysis (ICA), Structural Vector Autoregressive (SVAR), and multi-variate mixed causal–non-causal models. We use the Generalized Covariance (GCov) estimator to compute the residual-based portmanteau statistic for testing the error independence hypothesis. Next, we build the confidence sets for the identified sets of parameters by inverting the test statistic. We also discuss the choice (design) of these statistics. The approach is illustrated by simulations examining the under-identification condition in an ICA model and an application to financial return series.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.